
Models of pricing and inflation

The Calvo model and the New Keynesian Phillips curve: a review

Let’s refresh ourselves on how the New Keynesian Phillips curve is derived from the Calvo assumption.1

First, we’ll assume that the “final good” is produced as a constant-elasticity-of-substitution (CES) aggregate
of monopolistically competitive firms’ production:

Yt ≡
(∫ 1

0
Yt(i)1− 1

ε di
) ε

ε−1
(1)

Suppose, for simplicity, that the production technology for each firm is linear in labor, with a coefficient
that we’ll normalize to one: Yt(i) = Nt(i). It follows that the cost of producing Yt(i) is WtYt(i), where Wt is
the nominal wage.

Firm’s problem. The Calvo assumption is that a firm is only able to change its price with iid probability
1 − θ each period, and fulfills all demand at its current price.

A firm that is able to change at date t chooses its price P∗
t to maximize the current market value of profits

generated while the price is in effect, i.e. to maximize

max
P∗

t

∞

∑
k=0

θkEt[Qt,t+k(P∗
t − Wt+k)Yt+k(P∗

t )] (2)

where Yt+k(P∗
t ) =

(
P∗

t
Pt+k

)−ε
Yt+k is the demand implied by (1), so that (P∗

t − Wt+k)Yt+k(P∗
t ) is profit in

period t, and Qt,t+k ≡ βk(Ct+k/Ct)−σ(Pt/Pt+k) is the stochastic discount factor by which nominal payoffs
at date t + k are valued at date t, which is just the ratio of a consumer’s marginal utilities from nominal
spending on consumption at the two dates.

The firm takes everything as given in (2) except P∗
t . Note that the derivative of Yt+k(P∗

t ) with respect to
P∗

t is

Y′
t+k(P∗

t ) = −ε(P∗
t )

−1
(

P∗
t

Pt+k

)−ε

Yt+k = −ε
Yt+k(P∗

t )

P∗
t

Therefore, the derivative of period-t profits (P∗
t − Wt+k)Yt+k(P∗

t ) with respect to P∗
t is

Yt+k(P∗
t )− ε

Yt+k(P∗
t )

P∗
t

(P∗
t − Wt+k)

which can be rewritten as

Yt+k(P∗
t )

P∗
t

(P∗
t − εP∗

t + εWt+k) = −(ε − 1)
Yt+k(P∗

t )

P∗
t

(P∗
t − ε

ε − 1
Wt+k)

and the first-order condition for (2), multiplying both sides by −P∗
t /(ε − 1) to eliminate the constant above,

is
∞

∑
k=0

θkEt

[
Qt,t+kYt+k(P∗

t )

(
P∗

t − ε

ε − 1
Wt+k

)]
= 0 (3)

1This narration is loosely taken from Galí (2015).
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If θ = 0, so that we always get to reset and only the k = 0 term in (3) is nonzero, then this gives a simple
flexible-price markup for prices over wages: P∗

t = ε
ε−1 Wt, where ε

ε−1 is the usual markup over marginal
cost for a monopolistic competitor.

We must similarly have P∗ = ε
ε−1 W in a zero-inflation steady state, since that’s the only way that (3) can

equal zero with constant P∗ and W. Note also that in that steady state, Qt,t+k = βk(Ct+k/Ct)−σ(Pt/Pt+k) =

βk, because C and P are constant.
Now, linearizing (3) around the zero-inflation steady state, the product rule implies something very

nice: since the inner term in parentheses,
(

P∗
t − ε

ε−1 Wt+k
)
, is zero in steady state, we can ignore any change

in Qt,t+kYt+k(P∗
t ), since it’s multiplying something equal to zero.2 Therefore we get just

∞

∑
k=0

θkβkEt[dP∗
t − ε

ε − 1
dWt+k] = 0

which can be rearranged as(
∞

∑
k=0

(βθ)k

)
dP∗

t =
ε

ε − 1

∞

∑
k=0

(βθ)kEt[dWt+k]

dP∗
t = (1 − βθ)

ε

ε − 1

∞

∑
k=0

(βθ)kEt[dWt+k]

dP∗
t

P∗ = (1 − βθ)
∞

∑
k=0

(βθ)kEt

[
dWt+k

W

]
(4)

where in the last step we divide by steady-state P∗ = ε
ε−1 W. Letting hats denote log deviations from steady

state, so that P̂∗
t ≡ dP∗

t
P∗ and Ŵt ≡ dWt

W , then (4) reduces to a simple equation for the relationship between
prices and wages, in log deviations from steady state. Firms set prices to match the mean of expected wages
k periods in the future, discounted by (βθ)k, where β is the discount rate and θ is the “persistence” of the
price, since the Calvo fairy visits with probability 1 − θ:

P̂∗
t = (1 − βθ)

∞

∑
k=0

(βθ)kEt[Ŵt+k] (5)

Aggregate prices. The derivation summarized in (5) only gives the dynamics of the reset price P∗
t for a

firm that chooses prices at date t.
What happens to the aggregate price, i.e. the price Pt of purchasing a single unit of the final good? One

can derive from (1) that

Pt ≡
(∫ 1

0
Pt(i)1−εdi

) 1
1−ε

(6)

Now, suppose that a random fraction 1 − θ of firms, which we will label as the subset i ∈ [0, 1 − θ] for
convenience, is chosen by the Calvo fairy to reset and resets at price P∗

t , while the remaining (1 − θ, 1] of

2This is just one case of the general point that if we’re totally differentiating d(x · y) = dx · y + x · dy, then the first term is zero if
y = 0.
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the continuum does not and keeps their old prices Pt−1(i). Then we have

Pt =

(∫ 1−θ

0
(P∗

t )
1−εdi +

∫ 1

1−θ
Pt−1(i)1−εdi

) 1
1−ε

=

(
(1 − θ)(P∗

t )
1−ε + θ

∫ 1

0
Pt−1(i)1−εdi

) 1
1−ε

=
(
(1 − θ)(P∗

t )
1−ε + θ(Pt−1)

1−ε
) 1

1−ε (7)

where the crucial step is in the second line, where we wrote
∫ 1

1−θ Pt−1(i)1−εdi = θ
∫ 1

0 Pt−1(i)1−εdi because
of the random Calvo adjustment assumption, so that the measure θ of firms who don’t adjust is chosen
randomly, and any integral of their prices is just θ times the integral of all prices.3

What happens if we log-linearize (7) around the zero-inflation steady state? Then we get simply

P̂t =
1

1 − ε

(
(1 − θ)(1 − ε)P̂∗

t + θ(1 − ε)P̂t−1
)

= (1 − θ)P̂∗
t + θP̂t−1 (8)

which gives a very simple law of motion for aggregate prices. Note that we can rewrite this AR(1) as an
MA(∞) by substituting the same expression for P̂t−1, etc, until we get

P̂t = (1 − θ)
∞

∑
k=0

θk P̂∗
t−k (9)

which is a nice parallel with (5): whereas (5) states that that pricesetters set their “reset prices” equal to
the geometric average of current and future expected nominal marginal costs (in this case, just wages) with
weights (βθ)k, (9) states that the overall price index is a geometric average of current and past reset prices,
with weights θk.

This is all pretty intuitive: someone setting prices today chooses her “reset price” to try and hit an
average of future marginal costs while the price is still in effect, which k periods in the future has probability
θk (adding discounting by βk to reflect less concern about the future). Then, the overall price today is an
average of reset prices from k periods ago based on the fraction of prices today that were set back then,
which is proportional to θk.

How do we get the New Keynesian Phillips curve? So far, we have two very intuitive expressions, (5)
and (9), which we’ll repeat below:

P̂∗
t = (1 − βθ)

∞

∑
k=0

(βθ)kEt[Ŵt+k] (5)

P̂t = (1 − θ)
∞

∑
k=0

θk P̂∗
t−k (9)

How do we obtain the canonical New Keynesian Phillips curve from these, which is a relationship between
inflation πt ≡ P̂t − P̂t−1 and real marginal cost m̂ct ≡ Ŵt − P̂t?

3Our notation here is a bit dicey, as is always the case when putting random variables on the continuum [0, 1]. People have
complained about this, e.g. Judd (1985), but it’s too much of a distraction to try to be more formal.
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This requires a few minor miracles. First, let’s put both (5) and (9) into recursive, AR(1) form. For the
first, we can write

P̂∗
t = (1 − βθ)

∞

∑
k=0

(βθ)kEt[Ŵt+k]

= (1 − βθ)Ŵt + βθEt

[
(1 − βθ)

∞

∑
k=1

(βθ)kEt+1[Ŵt+k]

]
= (1 − βθ)Ŵt + βθEt[P̂∗

t+1] (10)

where we use the law of iterated expectations in the second line.
Then, (9) in recursive form is just (8), which we’ve already written. Let’s take (9) and subtract P̂t−1 from

both sides, obtaining
πt ≡ P̂t − P̂t−1 = (1 − θ)(P̂∗

t − P̂t−1) (11)

Next, let’s try to evaluate (11) by subtracting P̂t−1 from the left of (10), and P̂t−1 = P̂t − (P̂t − P̂t−1) = P̂t −πt

from the right:

P̂∗
t − P̂t−1 = (1 − βθ)(Ŵt − P̂t) + βθEt[P̂∗

t+1 − P̂t] + πt (12)

Multiplying both sides by (1 − θ) and applying (11), this becomes

πt = (1 − θ)(1 − βθ)(Ŵt − P̂t) + βθEt[πt+1] + (1 − θ)πt (13)

or, isolating πt on the left by subtracting (1 − θ)πt and then dividing by θ, just

πt =
(1 − θ)(1 − βθ)

θ
m̂ct + βEt[πt+1] (14)

where we define real marginal cost m̂ct ≡ Ŵt − P̂t. This is the canonical New Keynesian Phillips curve
relating inflation to real marginal cost and expected future inflation.

Note that the discount factor in (14) is only β, without the factor θ giving the survival probability of
the price. This is a big deal: if we calibrate β to be consistent with real interest rates, most likely it’s fairly
close to 1 on a quarterly basis, while θ will be well below 1 if a decent fraction of firms adjust their prices
every quarter. Having β rather than βθ as the discount on future inflation in (14) makes it vastly more
forward-looking than we would otherwise have.

This only happened at the very end of our derivation. Prior to that, at (12), we had πt on the right
to reflect the fact that, conditional on real marginal cost, nominal marginal cost advances at the rate of
inflation. This means that the desired price today, among pricesetters, moves up with inflation (again,
conditional on real marginal cost), which creates a “strategic complementarity” among pricesetters. The
amplification from this complementarity, which is θ−1, offsets the discounting by θ that otherwise appears
in the pricesetter’s problem.4

Converting this to a Phillips curve in output (or the “output gap”). We often think about “Phillips
curves” as being specified in terms of the “output gap” (the deviation of output from the level that would

4One way to think about it: as a pricesetter, suppose I first want to increase prices by 1. But then I know that the fraction 1 − θ of
other pricesetters will do the same, and this will increase nominal marginal cost, so I want to increase my prices by another 1 − θ, and
so on. At the end of the day, I want to increase my prices by 1 + (1 − θ) + (1 − θ)2 + . . . = θ−1 times whatever I would have wanted
if I ignored the actions of other pricesetters. This offsets the discounting by θ.
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prevail in a flexible-price economy), or in terms of unemployment, which tends to be closely related.
Here, I haven’t specified any shocks that woudl affect the level of output in a flexible-price economy, so

I’ll treat “output gap” as synonymous with simply “output”. Then, I’ll note that to first order,5 the linear
production technology we assumed implies Yt = Ct = Nt. If the household has utility in each period of the
form

C1−σ
t

1 − σ
− N1+η

t
1 + η

(15)

then its first-order condition for consumption vs. labor is

Wt

Pt
C−σ

t = Nη
t (16)

because at a disutility cost of Nη
t , the household can earn real wages Wt

Pt
that purchase consumption with

marginal utility C−σ
t . Substituting Ct = Nt = Yt, this becomes

Wt

Pt
= Yσ+η

t (17)

or, in log-linearized terms, just
m̂ct = (σ + η)Ŷt

Substituting into (14), we get

πt =
(1 − θ)(1 − βθ)

θ
(σ + η)Ŷt + βEt[πt+1] (18)

which expresses inflation in terms of deviation of output from the steady steady, which is equivalent for us
(in the absence of technology shocks) from the output gap.

The key added factor here is (σ + η), the sum of the inverse elasticity of substitution and inverse Frisch
elasticity of labor supply. When elasticities are lower, households demand high real wages to work in a
boom (and vice versa), which puts greater pressure on real marginal costs and therefore inflation for any
boom in output.

Empirical and quantitative issues with the New Keynesian Phillips curve

There are three big issues that pop up about the New Keynesian Phillips curve, in form (14) or (18):

• It is extremely forward-looking, discounting the future by only β (which in the representative-agent
model equals 1/(1 + r)).

• It is entirely forward-looking, with no inertia.

• It has a coefficient of (1−θ)(1−βθ)
θ (σ + η) on the output gap, which can be quite high compared to

empirical estimates.

The fact that the New Keynesian Phillips curve is entirely forward-looking means that, in principle, an
anticipated decline in inflation should actually coincide with a boom in output. (That’s what happens if

5This is only to first order, since there is a second-order cost of price dispersion that I’ll ignore when deriving the first-order laws
of the economy.
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Et[πt+1] on the right of (18) is smaller than πt.) This is in stark contrast to experience in the United States
and elsewhere, where disinflation, even when it is anticipated (i.e. no longer fully unexpected), tends to
involve an economic downturn.6

The lack of inertia in the New Keynesian Phillips curve stands in contrast to the general sense that
inflation in the real world, at least once it’s established for more than a quarter or two, seems to have some
persistence, which is what makes disinflation difficult. Fuhrer and Moore (1995) pointed this out as a major
problem, and quantitative models like Christiano, Eichenbaum and Evans (2005) have needed to build in
inertia by modifying the model (in Christiano et al. (2005)’s case, by assuming that prices and wages are
automatically “indexed” to inflation).

Finally, the coefficient (1−θ)(1−βθ)
θ (σ+ η) can be quite high given reasonable-seeming parameters. Naka-

mura and Steinsson (2008) find that the average rate of price change monthly, excluding sales, is about 9–
12%. If we put in 1 − θ = .3 quarterly and β ≈ 1, we get a quarterly slope (1−θ)(1−βθ)

θ = 0.129 relating real
marginal cost in a quarter and quarterly inflation.

Next, at the very least, σ ≥ 1 and η ≥ 1, so if we plug in σ = 1 and η = 1, then we get an additional factor
of σ + η = 2 on the slope with respect to the output gap, giving us (1−θ)(1−βθ)

θ (σ + η) = 0.258. Further, by
“Okun’s law”, the change in the output gap is usually around twice the change in unemployment, so this
would imply an overall coefficient of about 0.5 on unemployment in a quarterly Phillips curve.

What is the actual coefficient identified in the data? The headline Hazell, Herreno, Nakamura and
Steinsson (2022) estimate is 0.0062! This is almost two orders of magnitude off. Clearly, there’s a big quantita-
tive puzzle here.

(Of course, it might seem like a bit less of a puzzle in the last few years, as inflation has exploded and
then partially cooled down again. But that’s part of the mystery—why did we detect such a weak Phillips
curve relationship before, and only now we’re seeing something larger? There are many possibilities, some
outside the scope of what we’ll cover—e.g. a highly convex, nonlinear wage Phillips curve. But in part, we
also need to think about changes to the New Keynesian Phillips curve.)

Finally, it’s important to be careful about how we adjust these numbers as we change frequency. The
coefficient of ∼ 0.5 that we derive above is for a quarterly Phillips curve, as is fairly standard. It tells us
how higher unemployment for a single quarter affects quarterly (not annualized!) inflation. To convert this
to the effect on the annualized rate of inflation, we need to multiply by 4. Further, if we’re interested in
the effect of unemployment being higher for an entire year (rather than just a quarter) on the annualized
rate of inflation today, we have to multiply by approximately 4 again to reflect the cumulative effect of 4
quarters of unemployment (assuming roughly no discounting, β ≈ 1, within the year). This would result
in an annual Phillips curve coefficient of roughly 4 × 4 × 0.5 = 8.

This is obviously extremely high: it would imply that if monetary policy managed to increase antici-
pated unemployment by 1 percentage point for the year, the annual rate of inflation would immediately
fall by 8 percentage points, from that alone! (Surely the Fed would be delighted if disinflation was so easy.)

6This issue, I believe, was originally pointed out by Ball (1994).
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Generalizing to time-dependent pricing

The non-recursive form of the Calvo model had two key equations. First, there’s what we will call the
policy equation, which gives the reset price policy for the pricesetters who do adjust, in terms of current and
expected future nominal marginal cost (which in this case is just nominal wages):

P̂∗
t =

∑∞
k=0(βθ)kEt[Ŵt+k]

∑∞
k=0(βθ)k = (1 − βθ)

∞

∑
k=0

(βθ)kEt[Ŵt+k] (5)

Second, there’s what we will call the law of motion, which gives the actual change in the overall price level
in terms of current and past reset prices:

P̂t =
∑∞

k=0 θk P̂∗
t−k

∑∞
k=0 θk = (1 − θ)

∞

∑
k=0

θk P̂∗
t−k (9)

We see that there are geometrically declining weights θk in both cases, corresponding to the chance that a
price we set today will still be in effect k periods from now for (5), and the change that a price in effect today
will have been set k periods in the past for (9). (For (5), there is additional discounting by βk.)

Now let’s consider a generalization, where the chance that a price set today will still be in effect k periods
from now is given by an arbitrary survival function Φk defined for k = 0, 1, . . .. The Calvo case is the special
geometric case Φk = θk, but in principle we can have any weakly declining Φk, as long as Φ0 = 1 and

∑k Φk < ∞.
For instance, the Taylor (1980) staggered pricing model features Φk = 1 for k < N and Φk = 0 for k ≥ N,

for some contract length N, meant to capture some kind of regular contract length. We could imagine
mixtures of Taylor and Calvo pricing: for instance, maybe in a quarterly calibration Φk drops mildly from
Φ0 through Φ3, then drops to almost zero at Φ4, then drops rapidly. This would capture a situation where
firms usually wait a year from their last price change to change prices, but sometimes there is some shock
that causes them to change prices earlier, and occasionally they wait longer than a year (but are very likely
to change if it has been longer than a year).7

Given a survival function Φk, if a price has survived through date k − 1, then its chance of being reset in
date k is

λk ≡
Φk−1 − Φk

Φk−1
= 1 − Φk

Φk−1
(19)

where λk is called the hazard rate of adjustment. We assume that the chance of being reset is exactly λk for
every price that has survived through date k − 1, i.e. that it doesn’t depend on how far off the price is from
its optimal level. In other words, this is a general time-dependent pricing rule rather than a state-dependent
pricing rule, which we’ll cover soon.

How do the policy equation and law of motion change in the general time-dependent world? One can
rederive them step-by-step and show that essentially the same derivation goes through, so that the policy
equation (5) becomes

P̂∗
t =

∑∞
k=0 βkΦkEt[Ŵt+k]

∑∞
k=0 βkΦk

(20)

i.e. that we simply replace θk with the more general Φk. This makes sense: if pricesetters weight future

7Importantly, though, in this time-dependent model, we assume that this “shock” has to be orthogonal to the economy and the
pricesetter’s optimal price, which is a bit tenuous as an assumption. It could be some kind of internal planning change, perhaps.
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costs by the chances that their prices will still be in effect, then they’ll use Φk.
The law of motion (9) similarly becomes

P̂t =
∑∞

k=0 Φk P̂∗
t−k

∑∞
k=0 Φk

(21)

where the weights on past prices become the chance that prices will have survived that long.8

Matrix and vector notation: the pass-through matrix and the generalized Phillips curve

To solve a general time-dependent model, it turns out to be useful to have the same “sequence-space Ja-
cobian” notation that we used for heterogeneous agent models, where sequences are mapped to other
sequences.

In particular, if P∗, W, and P are stacked {P̂∗
t }, {Ŵt}, and {P̂t}, respectively, then we can write the policy

equation (20), dropping the expectations sign, as:

P∗ =
1

∑∞
k=0 βkΦk


Φ0 βΦ1 β2Φ2 · · ·
0 Φ0 βΦ1 · · ·
0 0 Φ0 · · ·
...

...
...

. . .

W (22)

Similarly, we can write the law of motion (21) as:

P =
1

∑∞
k=0 Φk


Φ0 0 0 · · ·
Φ1 Φ0 0 · · ·
Φ2 Φ1 Φ0 · · ·
...

...
...

. . .

 P∗ (23)

Then, if we combine (22) and (23) into a single equation relating nominal marginal cost W to prices P, we
get

P =
1

(∑∞
k=0 Φk)

(
∑∞

k=0 βkΦk
)


Φ0 0 0 · · ·
Φ1 Φ0 0 · · ·
Φ2 Φ1 Φ0 · · ·
...

...
...

. . .




Φ0 βΦ1 β2Φ2 · · ·
0 Φ0 βΦ1 · · ·
0 0 Φ0 · · ·
...

...
...

. . .


︸ ︷︷ ︸

≡Ψ

W (24)

where, as in Auclert, Rigato, Rognlie and Straub (2024), we say that the matrix mapping W to P is the pass-
through matrix from costs to prices, which we denote by Ψ.9 The pass-through matrix entry Ψts says how
much the aggregate price level at date t responds to nominal marginal cost at date s.

Note that in the benchmark of perfectly flexible prices, with Φ0 = 1 and Φk = 0 for k > 0, Ψ is simply
the identity matrix I. That’s because we are operating in a model where the only thing stopping one-to-one
pass-through of costs to prices is the price rigidity. (This is not to say that there aren’t interesting other

8In extreme cases like Taylor, this requires an additional uniformity assumption to make sure that everyone isn’t synchronizing
their price change at the same date. But one can dispense with this assumption as long as Φ1 is strictly less than 1, even by just ϵ,
which in a steady state creates the requisite uniform mixing of price resetting across dates.

9Sometimes we might write ΨΦ to clarify that this is the pass-through matrix induced by the survival function Φ.
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frictions that limit this pass-through, only that we won’t cover them right now.)
Although (24) might seem a little daunting, it isn’t so bad when read from right to left: the upper-

triangular right matrix says that to get from W to P∗, we need to take a forward-looking average weighted
by βkΦk, and then the lower-triangular left matrix says that to get from P∗ to P, we need to take a backward-
looking average weighted by Φk.

Solving for the generalized Phillips curve. The pass-through matrix Ψ gives the relationship between
nominal marginal cost, in this case the deviation W in nominal wages, and the nominal price level P. How
can we get from there to a relationship akin to the New Keynesian Phillips curve (14), relating real marginal
cost m̂ct = Ŵt − P̂t to inflation πt?

Stacking m̂ct in the vector mc, we can write

P = Ψ(mc + P) (25)

where we see that (25) is a fixed-point equation, with the price level P appearing on both sides.
One approach to solving (25) might be to iterate: first assume on the right that P = 0, getting a guess

Ψmc for P, then feed that back into the right to obtain Ψ(mc + Ψmc) = (Ψ + Ψ2)mc, and so on. Ultimately,
we’ll get (Ψ + Ψ2 + . . .)mc, reflecting infinitely many rounds of feedback from real marginal cost to prices.
It is nontrivial to handle the mathematical details necessary to show that this converges and that it actually
equals the equilibrium price level, but we do so in an appendix of Auclert et al. (2024). We can then write

P = (I − Ψ)−1Ψmc =

(
∞

∑
k=1

Ψk

)
mc (26)

The inflation rate is then the first difference πt = P̂t − P̂t−1. Stacking πt in π and letting L be the “lag
operator”, we can write π = (I − L)P, can combine with (26) to obtain

π = (I − L)(I − Ψ)−1Ψ︸ ︷︷ ︸
≡K

mc (27)

where we call the matrix K that maps the vector of real marginal costs mc to the vector of inflation π the
generalized Phillips curve, again as in Auclert et al. (2024).

Note that in the Calvo case, the standard New Keynesian Phillips curve (14) gives a very special struc-
ture for K, namely

Kcalvo ≡ (1 − θ)(1 − βθ)

θ


1 β β2 · · ·
0 1 β · · ·
0 0 1 · · ·
...

...
...

. . .

 (28)

i.e. that the generalized Phillips curve Kcalvo is upper triangular with entries that decline geometrically as
we move above and to the right of the main diagonal. But more generally, we can evaluate the formula
K = (I − L)(I − Ψ)−1Ψ in (27) for any pass-through matrix and see what we get.

An important intuition: intrinsic inflation persistence. One longstanding idea is that with the appro-
priate time-dependent rules, we should get inflation persistence, unlike in the purely forward-looking New
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Keynesian Phillips curve. In particular, the idea is that this is true when time-dependent rules have increas-
ing hazard rates: where you are unlikely to adjust a price that you just adjusted, and then the probability of
adjusting rises as time goes on. (An extreme example of an increasing hazard rate is the Taylor case, where
the hazard rate starts at zero and then goes to one.) Sheedy (2010) is probably the most relevant paper doing
this in a modern context, with the same generalized time-dependent rules we have above.

The intuition is that when today’s pricesetters are the ones who haven’t set prices in a long time, then
if there has been inflation in the recent past, they will need to increase prices in order to catch up with the
inflation that has already occurred, even if there are no additional shocks to real marginal cost. Intuitively,
this can lead to a cycle of inflation: today’s pricesetters increase their prices to catch up with yesterday’s
inflation, and then tomorrow’s pricesetters increase their prices further to catch up with today’s inflation,
and so on.

It turns out that this intuition is true in the model, but perhaps not quantitatively as strong as one might
think. An increasing hazard rate does lead to persistence, and inversely a decreasing hazard rate leads to
anti-persistence (a partial reversal of past inflation), but this often dies out within just a few periods after the
shock—a sharp contrast to the very forward-looking anticipatory behavior we get with the New Keynesian
Phillips curve.

Can alternative time-dependent models make the Phillips curve less forward-looking? One of the lead-
ing problems with the New Keynesian Phillips curve is its lack of inertia, and as we discuss above, these
more general models can partly fix this (but not necessarily by enough).

Another issue was its extreme forward-lookingness: the fact that the future is discounted only with β,
which might be very close to 1, and is much higher than the survival probability of prices.

It turns out that in the general time-dependent case, although there isn’t the exact forward-looking
structure with a discount rate of β each period as in (28), asymptotically the effect of a real marginal cost
shock in the future still decays at a rate of β. We’ll see this in our computations, and it is a consequence of
Proposition 3 in Auclert et al. (2024).
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State-dependent (“menu cost”) models

One conceptual weakness of the models we’ve seen so far is that the probability of adjusting prices is
exogenous, and doesn’t depend on whether a price is low or high—it’s just a constant rate 1 − θ in the
Calvo case, and the time-dependent hazard rate λk in the general time-dependent case.

This seems unrealistic, at least at the extremes: surely if your price is far, far higher than you want it
to be, or far, far, lower, and this is losing you money, then you are probably going to change your price,
regardless of what some arbitrary time-dependent schedule says.

An alternative class of models, state-dependent models, addresses this concern. In these models, the de-
cision of whether or not to adjust prices is conditional on the firm’s “state”, i.e. the price itself vs. the
fundamentals of cost, etc. In the simplest case, menu cost models, which we’ll look at, adjusting prices incurs
a fixed “menu cost”, and each period firms decide whether or not to adjust.

There is a long history and vast variety of menu cost models. The modern literature, with a seminal
paper being Golosov and Lucas Jr (2007), generally assumes that firms face idiosyncratic shocks to either
productivity or demand (or both), and are constantly deciding whether or not to pay the menu cost in
response to these idiosyncratic shocks. We then see what happens when we introduce an aggregate shock
that changes costs (in Golosov and Lucas Jr (2007), a “money” shock that exogenously changes total nominal
demand for goods).

One can try to tame these models by introducing a variety of simplifications, including a second-order
approximation to the firm’s profit function, and an assumption that firms’ productivity follows a random
walk, so that all that is relevant is the gap between the current price and productivity.10 With all these sim-
plifying assumptions, many of them made in Alvarez, Le Bihan and Lippi (2016) and also in the appendix
of Auclert et al. (2024), we obtain a simplified problem of the form

min
{pit}

E0

∞

∑
t=0

βt
[

1
2
(pit − p∗it − log Wt)

2 + ξ1{pit ̸=pit−1}

]
(29)

where the firm faces a quadratic cost of having its actual log price pit deviate from the sum of its idiosyncrat-
ically optimal log price p∗it and log nominal wages log Wt, which we normalize in steady state to log W = 0.
We assume that p∗it follows a random walk p∗it = p∗it−1 + ϵit, with some iid ϵit symmetric around zero. The
firm balances this cost of having a suboptimal price against the “menu cost” ξ of adjusting its price.

If we define the price gap xit ≡ pit − p∗it to be the difference between a firm’s actual log price pit and its
idiosyncratically optimal log price p∗it, then we can rewrite (29) in terms of the price gap as

min
{xit}

E0

∞

∑
t=0

βt
[

1
2
(xit − log Wt)

2 + ξ1{xit ̸=xit−1−ϵit}

]
(30)

Once the problem is written in this form, we can write a Bellman equation using the single state variable x
rather than the two state variables p and p∗:

Vt(x) =
1
2
(x − log Wt)

2 + βE

[
min

(
Vt+1(x + ϵ), ξ + min

x∗
Vt+1(x∗)

)]
(31)

10Technically, for this to work properly, one also needs to introduce demand shocks that are simultaneous with and in the opposite
direction as productivity shocks. In response to a simultaneous positive productivity shock and negative demand shock, firms’
optimal price p∗ will fall, but their total demand at that price will not change. This is a technical hack needed to prevent some firms
from asymptotically gaining all the demand in the economy. See Midrigan (2011). We won’t worry too much about the details here,
and will instead just take the specification (29) of the problem as given.
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where here Vt(x) is the value function given a post-adjustment price gap of x (not including any costs paid
to adjust), which happens to be a convenient way to formulate the probelm.

It turns out that the optimal policy for price gaps xit that solves (30), or equivalently (31), will generally
take the so-called Ss form, with

xit =

xit−1 − ϵit xit−1 − ϵit ∈ [xt, xt]

x∗t otherwise
(32)

where the price is adjusted whenever yesterday’s price gap xit−1, adjusted for today’s shock ϵit, lies outside
the adjustment bands [xt, xt], and is not adjusted otherwise. The optimal reset price gap x∗t is the same no
matter what the incoming price is, since the menu cost is fixed and does not depend on how much we
adjust.

To a first-order approximation, one can write the aggregate price level log Pt as the cross-sectional aver-
age across all firms (which we assume has measure one) of price gaps:

log Pt =
∫

pitdi =
∫

xitdi (33)

where the integrals are equal because we normalize the average of p∗it to zero (which is possible since shocks
ϵit have mean zero).

We now have a complete model mapping log nominal wages log Wt, which appear in (30), to log nom-
inal prices log Pt, which appear in (33). How might this model differ from the Calvo and generalized
time-dependent models we’ve seen so far?

To evaluate this, we’ll look at first-order shocks around the steady state. Given the assumption that
the distribution of shocks ϵit is symmetric around 0, and that steady-state log Wt is zero in (30), so that the
quadratic objective in (30) is symmetric around zero, the steady-state Ss rule will have the simple form

x = −x

x∗ = 0

i.e. the adjustment bands for the price gap will be symmetric around zero, and the optimal reset point for
the price gap will be zero. This will lead to a steady-state initial density of price gaps g(x), which obeys the
equation

g(x) = freq · f (x) +
∫ x

x
f (x − x′)g(x′)dx′

where f (·) is the distribution of shocks ϵit, and freq = 1 −
∫ x

x g(x)dx is the fraction of prices that are reset
each period.

We’ll then look at how shocks Ŵt to log Wt lead to changes P̂t in the path of aggegate prices, obtaining a
pass-through matrix and generalized Phillips curve just like for the time-dependent case.

Reducing this to a mixture of two time-dependent models

Until recently, it was thought that these models, even in this simplified form, are quite hard to solve, and
that some mix of brute-force numerical calculation and additional simplifying assumptions was needed.
Proposition 1 in Auclert et al. (2024), however, provides an analytical result that obtains the pass-through
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matrix for the problem above as a convex combination of the pass-through matrices for two time-dependent
models.11

Expectation function. Recursively define

Et(x) =
∫ x

−x
f (x′ − x)Et−1(x′)dx′ (34)

to be the expectation function for the price gap, with the initial condition E0(x) = x. This function answers
the question: in the aggregate steady state, if the (post-adjustment) price gap is x today, what is the expected
price gap t periods in the future, assuming that x? The recursive formula (34) effectively applies the law of
iterated expectations: the expectation t periods from now, given that the price gap today is x, is the same
as the expectation today of tomorrow’s expectation t − 1 periods in the future, taking the expectation today
over all possible x′ tomorrow. Note that by symmetry, it is easy to show that Et(0) = 0 for all t, so that
only one term appears on the right of (34), taking the expectation of Et−1 conditional on there not being an
adjustment tomorrow.

Immediately from the definition, we have that E0(x) = x. In general, Et(x) converges to zero as t → ∞
for two reasons. First, there is always a probability that we will adjust the price gap to zero, and then the
expectation from then on is zero. Second, and more subtly, conditional on not adjusting, price gaps will tend
to move closer to zero. That’s because if prices ever went outside the adjustment bands, they would have
been reset to zero; hence, the very fact that they have survived and not been reset means that they more
likely moved away from the adjustment bands and toward zero. This is the so-called “selection effect” for
prices.

A technical detour (for those interested). A bit more subtly, Et(x) will converge to multiples of an
eigenfunction, and then decay at the corresponding eigenvalue. The reason is that (34) is a linear operator on
functions, linearly mapping the function Et−1 to Et. Repeatedly applying a matrix generally gives us a mul-
tiple of the eigenvector corresponding to the largest eigenvalue (since ones with other eigenvalues decay
more quickly). Analogously, repeatedly applying this operator gives us the eigenfunction corresponding
to a leading eigenvalue—but in this case the largest eigenvalue on odd functions, because all the Et(x) are
odd, which is not the largest eigenvalue overall.12

Meanwhile, if we defined Φactual,t(x) to be the probability of survival for at least t periods if the price
gap is currently x, then we would have Φactual,0(x) = 1 and then the same recursion as (34) would apply:

Φactual,t(x) =
∫ x

−x
f (x′ − x)Φactual,t−1(x′)dx′ (35)

Since this is the same recursion, it’s the same linear operator as in (34). but now since the initial condition is
even Φactual,0(x) = 1, Φactual,t(x) is even as well. It follows that it decays to the eigenfunction corresponding
to the largest even eigenvalue, which turns out to be larger.13 This is a manifestation of the “selection
effect”, which we’ll see strongly in our computations: the Et functions decay far, far faster than the Φactual,t

11The baseline model for which this is proven in Auclert et al. (2024) is slightly more general than the model above, allowing for an
additional iid Calvo-like probability λ of “free” price adjustments, so that with a λ probability, firms adjust prices no matter what.

12Formally, we need a bit more to ensure that there are discrete eigenvalues and eigenfunctions, e.g. that Et(x) is also a “compact”
operator—but that gets into even more of a technical detour.

13See Alvarez and Lippi (2022) and Auclert et al. (2024) for more on this.
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functions.

Auclert et al. (2024) result: getting the pass-through matrix. Our result (a bit too complicated to prove
formally here) is that pass-through matrix of the menu cost model is given by

Ψ = αΨΦe
+ (1 − α)ΨΦi

(36)

where ΨΦe
and ΨΦi

are the pass-through matrices generated by the “virtual” survival functions Φe and Φi,
which represent the extensive and intensive margins of the model,14 and are given by

Φe
t ≡

Et(x)
x

(37)

Φi
t ≡ Et′(0) = lim

x→0

Et(x)
x

(38)

and the weight α on the extension margin is given by:

α ≡ 2g(x)x ·
∞

∑
t=0

Et(x)
x

(39)

The virtual survival functions Φe
t and Φi

t are fairly easy to interpret: they are the local persistences of the
price gap at the intensive and extensive margin.

When we’re choosing what price to set at the intensive margin in response to shocks, for instance, it
turns out that what matters for us is the effective persistence of that price: if we decide to choose a price gap
x∗t that is a bit higher than zero today (because, say, costs have risen above the steady state today), how
long will x∗t stay above zero? At the margin, this is given by Φi

t above.
Similarly, when we decide whether to adjust to zero today around the adjustment threshold x (or, sym-

metrically, −x), what matters is the effective persistence of that decision: if we decide to lower the price
gap from x to zero today, how will that lower the price gap in the future?

These effective persistences turn out to be the analogs, in this model, of the generalized survival func-
tions in the time-dependent case—such close analogs, in fact, that we can literally treat the extensive and
intensive margins of adjustment individually as being equivalent to generalized time-dependent problems.

It turns out that for both the intensive and extensive margins, the “effective persistences” will be lower
than the actual survival rate of a given price (i.e. how long is it until a price actually adjusts). This is because
of the selection effect mentioned above: conditional on a price not adjusting, it is likely that the price gap is
much closer to zero.

What this means is that the effective (“virtual”) survival rate in the time-dependent models that com-
prise the menu cost model will decline much more quickly than in time-dependent models calibrated to the
same rate of adjustment. This implies that a menu cost model will behave as if aggregate prices are much
more flexible than we might expect from a calibrated Calvo model (where we already had a puzzle of too
high a slope of the New Keynesian Phillips curve). This is a consistent finding from the quantitative menu
cost literature, perhaps most prominently in Golosov and Lucas Jr (2007).

A slightly different way to put it is the following: since price-setters assume that they will adjust prices
whenever their price gaps get very far out of line, their effective horizons are quite short. Whatever they

14The extensive margin is the decision of whether or not to adjust prices, and the intensive margin is the decision of what price to
set conditional on adjustment.
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choose today in terms of prices (both on the intensive and extensive margins) will not have a very long-
lasting impact. Therefore, they should choose it with only the near future in mind—and they get closer to
the case of perfect flexibility.

Ends up close to Calvo. As we’ll see when we implement (36), the pass-through matrix Ψ and the re-
sulting generalized Phillips curve K end up looking remarkably close to the New Keynesian Phillips curve
produced by the Calvo case, just with a higher slope due to the selection effect. Hence, this doesn’t give
us much—it doesn’t lessen forward-lookingness or add inertia, and it aggravates the existing puzzle of the
Calvo model producing too high a slope for the Phillips curve.

Why is this model so close to Calvo? The main reason is that the virtual survival curves Φe
t and Φi

t

behave similarly to the Calvo case, decreasing at a roughly constant hazard rate. Why is this? Technically,
it’s because there is rapid convergence to the leading odd eigenfunction discussed above, and then the
hazard rate for both is the eigenvalue corresponding to this eigenfunction. But why is there this rapid
convergence in practice? Loosely, it’s because we the adjustment bands [−x̄, x̄] to be relatively narrow in
order to calibrate to a high enough rate of price changes (say, at least once annually, or 0.25 quarterly). This
narrowness means that conditional on staying within the bands, there is a lot of mixing between different
price gaps, and the initial price gap quickly becomes irrelevant. (One way to say this is that the distribution
of your price gap several periods ahead, conditional on not having reset, quickly becomes independent of
your position today.) So Φe

t and Φi
t quickly decay at the same, constant rate.

Initially, the hazards are different: Φi
t declines more slowly, and Φe

t declines more quickly, because the
chance of resetting (and the associated selection effect) is much lower when we start from 0 than when we
start from x̄. But these differences go away quickly enough that there is not much quantitative impact.

The “Calvo-plus” model: adding free resets. The basic menu cost model implies that there are only large
price changes, which does not seem true in the data: sometimes there are small price changes too, although
prices do seem more likely to be reset when price gaps are especially large.

One easy way to fix this, achieving a blend of the menu cost and Calvo models, is to suppose that the
menu cost is actually a stochastic ξit, equaling the positive constant ξ > 0 with iid probability 1 − λ, and
equaling zero with probablity λ. Whenever the menu cost is zero (a “free reset”), you’ll reset no matter
what; this Calvo-like adjustment leads to some small price changes. This model was dubbed the “Calvo-
plus” model by Nakamura and Steinsson (2010).

As Auclert et al. (2024) show, essentially all the same results above go through with this modification.
In the code, we’ll implement this, finding that the resulting generalized Phillips curve is still very similar
to the usual Calvo New Keynesian Phillips curve, with a slope that is still higher than the pure Calvo curve
calibrated to the same rate of adjustment, but lower than the pure menu cost model.

Interestingly, the shape of the Phillips curve differs a bit more from Calvo than in the menu cost model—
although it’s still very similar. This unintuitive result (why would making the model more Calvo-like make
the shape of the curve a bit less Calvo-like?) comes from the fact that there are wider adjustment bands, so
that Φe

t and Φi
t do not converge quite as quickly to the same constant hazard rate.
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Three simple modifications to the Calvo model

So far, we’ve seen that a menu cost model, and to a lesser degree time-dependent models in general, seem
to behave fairly similarly to Calvo, with all its weaknesses. Now we’ll consider the consequences of three
simple modifications.

Strategic complementarity

In our models so far, a firm ideally wants to change its price in each period by the same log amount that
nominal marginal cost changes. In some models, however, there is an additional motivation for firms to try
and stick closer to the average price level in the economy—so that, if the firm’s price was flexible, it would
target χMCt + (1 − χ)Pt rather than just MCt, for some χ ∈ [0, 1]. This is called strategic complementarity:
firms want to be close to other firms’ pricing decisions.

Recall that we derived (25) by writing P = ΨMC,15 and then replacing MC = mc + P. Now, we can
instead write P = Ψ(χMC + (1 − χ)P), which becomes

P = Ψ(χmc + P) (40)

This is the same equation as (25), just with the coefficient χ multiplying mc. Unsurprisingly, if we solve it
to obtain inflation, we get

π = χ(I − L)(I − Ψ)−1Ψmc (41)

which is the same as (27), just with an additional χ factor multiplying the old K = (I − L)(I − Ψ)−1Ψ. So
we obtain a simple result: strategy complementarity placing a weight of 1 − χ on the price level leads the
generalized Phillips curve to be shrunk by a factor of χ.

With enough strategic complementarity, in principle we can shrink the slope of the Phillips curve as
much as we want. This is often the strategy used in practice by quantitative papers to reconcile the Calvo
model (with a reasonable adjustment frequency) with macro estimates of the Phillips curve slope.

What is the justification for strategic complementarity? There are three main ways of getting it, which
we get by modifying firm-specific marginal costs, markups, or the structure of production.

• Suppose that firms have an upward-sloping marginal cost curve: it’s more costly for them to produce
additional units when they’re producing a lot. This creates a motive for them to set their price closer
to the aggregate price level: if they have an unusually high price, then they’ll have low demand and
therefore low costs (causing them to want to lower their price), and if they have an unusually low
price, then they’ll have high demand and therefore high costs (causing them to want to raise their
price).

• Alternatively, suppose that the elasticity of demand is not constant, and instead is lower when you
have a relatively low price and are selling more. Then if you have a low price, you’ll want to raise it a
bit, because the optimal markup is now higher with the lower elasticity of demand (and vice versa).
An extreme case is a so-called “kinked” demand curve where the elasticity is lower when you have a
low price (perhaps raising prices above the norm will send your customers away, but lowering prices

15We actually wrote P = ΨW, since nominal marginal cost simply equalled the wage; but it’s more general to put nominal marginal
cost there.
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won’t get too many customers). See Klenow and Willis (2016). This is perhaps the most common way
to obtain strategic complementarity.

• Yet another approach is to suppose that we have “roundabout” production, where some other firms’
goods are needed in the production of our own good. If we define MCt to exclude this part of cost,
and suppose (for simplicity) that producing one unit of the intermediate good requires a mass 1 − χ

of the final good, then we get exactly χMCt + (1 − χ)Pt.16 This is perhaps the simplest way to get
strategic complementarity: other firms’ prices directly affect our own costs, creating a motivation to
keep our prices close to theirs.

Mixture models with heterogeneous pricing

So far we’ve considered models where firms are homogeneous. In the Calvo case, they all have the same
Calvo rate of price change.

An alternative is to suppose that firms are heterogeneous. For instance, we could suppose that some
firms have one Calvo parameter and other firms have another Calvo parameter (and that otherwise they
are completely identical).

This is easy to handle: in the case where otherwise identical firms have different pricing frictions leading
to different pass-through matrices, we simply combine the pass-through matrices to obtain the aggregate,
and then proceed as before. For instance, if there are relatively “sticky” and “flexible” firms, we can write:

Ψ = astickyΨsticky + (1 − asticky)Ψ f lexible

This leads to two main consequences. First, this sort of mixture between firms tends to lead to anti-
persistence: following the inflation from a positive real marginal cost shock, inflation becomes negative,
as the flexible firms reverse their earlier increase and get closer to the sticky firms’ prices, which anchor the
economy. This is the opposite of what we’re looking for, although something resembling this does happen
in practice when there are energy or food price shocks, which tend to create short bursts of inflation that
then recede.

Second, the overall slope of the resulting generalized Phillips curve, especially if one excludes the ex-
treme boom-and-bust inflation dynamic around the time of the shock, tends to be closer to what one would
get from assuming that only the sticky pricers existed in the economy. This is a general point that has
been observed by many people, i.e. Carvalho (2006), and it is one way that we can match an aggegate
Phillips curve with a lower slope—by realizing that observed price change frequencies actually reflect a
mix of high-frequency and low-frequency firms, and that aggregate behavior will more closely resemble
what we’d expect from the low-frequency firms.

Why do the sticky firms dominate? Because the flexible firms can adjust, they tend to adjust their prices
to be close to the sticky firms at any moment, so that the sticky firms’ dynamics are the most important.

This approach is generalized to an explicit model with many sectors and input-output relationships
in Rubbo (2022) and Afrouzi and Bhattarai (2023). Rubbo (2022) shows that with the right weighting on
sectoral inflation—proportional to sectoral sales, and inversely proportional to flexibility—we obtain a price
index that still obeys the standard New Keynesian Phillips curve.

16Basu (1995) is usually cited for this model.
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Sticky expectations (or other behavioral frictions)

We can also modify the pass-through matrix using the tools from last lecture to reflect sticky expectations: the
fact that following a date-0 shock, some firms have not updated their expectations on either real marginal
costs or prices.

To do this, assuming that firms form expectations about real marginal costs and prices directly, we
simply modify the pass-through matrix as we did other Jacobians in the previous lecture.

What we get is not surprising: a low initial response to future real marginal cost changes, as many firms
have not updated their expectations yet (which feeds into prices, which feeds into the policies of firms that
have updated their expectations). In response to a reasonable AR(1) shock, this can lead to a hump.

We still get anti-persistence, however: once a real marginal cost shock has passed, if there are some firms
that have still not updated their expectations, then those firms won’t have changed their prices at all. The
firms that have updated their expectations realize this, and move their prices closer to the non-updating
firms, creating deflation that partly offsets the earlier inflation.
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