
Multiple sectors in an input-output network

Properties of production functions: a review

General properties of constant-returns-to-scale production. First, consider any constant-returns-to-scale
production function with multiple inputs, F(x1, . . . , xn).1 If we log-differentiate this production function,
we get

d log F =
∂ log F
∂ log x1

d log x1 + . . . +
∂ log F
∂ log xn

d log xn

which we can also write, using the notation Fi ≡ ∂F/∂xi, as

dF
F

=
F1x1

F
dx1

x1
+ . . . +

Fnxn

F
dxn

xn
(1)

which says that the percent change in output F equals the sum of percent changes dxi/xi in each input i,
weighted by their respective “shares” Fixi/F, which are also the elasticities of F with respect to xi. These
shares sum to one by what is often called Euler’s theorem, which states that a constant-returns-to-scale
function satisfies F = F1x1 + . . . + Fnxn.2

Further, if we suppose that the inputs x1, . . . , xn are chosen given prices p1, . . . , pn in a cost-minimizing
way to produce some quantity y, i.e. that they solve the problem

min
x1,...,xn

p1x1 + . . . + pnxn (2)

s.t. y = F(x1, . . . , xn)

then if we let ψ be the Lagange multiplier on the constraint, which is the marginal cost of producing an
additional unit of output, we have the optimality conditions pi = ψFi for each i. It follows that the share of
total costs spent on any input i is pixi/ ∑j pjxj = ψFixi/ ∑j ψFjxj = Fixi/F, i.e. that it is what we are already
calling the “share” of i.

Note that given prices pi, both the marginal cost ψ and the shares Fixi/F will be invariant to the level y
of output that is demanded. Hence ψ is really a constant cost per unit, not just marginal cost; ψy is the total
cost of producing y. This is due to constant returns to scale: any production plan {xi} that works for one y
can be scaled up or down to {αxi} to produce αy.

Finally, given the cost-minimization problem (2), we can ask what happens to the total costs of produc-
ing y if there is some shock to prices. It follows immediately from the envelope theorem, applied to (2) that
the change in the objective, total cost, will be dp1x1 + . . . + dpnxn. The percent change in total cost will then

1In the background, we’ll assume that F is strictly concave in every direction except the one where all xi are increased proportion-
ally, i.e. that dx′Fxxdx < 0 except when dx is proportional to x, where it equals zero. This ensures a unique optimum production plan,
and other nice behavior.

2We can derive this by writing αF(x1, . . . , xn) = F(αx1, . . . , αxn), and then differentiating both sides with respect to α around 1. It
is also visible from (1) itself: if all the inputs increase by the same infinitesimal amount dxi/xi = dϵ, then by constant returns to scale
we should have dF/F = dϵ on the left too, and cancelling these out we get 1 = F1x1

F + . . . + Fn xn
F .
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be

dψ

ψ
=

dp1x1 + . . . + dpnxn

p1x1 + . . . + pnxn
=

ψF ·
(

F1x1
F

dp1
p1

+ . . . + Fnxn
F

dpn
pn

)
ψF

=
F1x1

F
dp1

p1
+ . . . +

Fnxn

F
dpn

pn
(3)

i.e. it is the share-weighted sum of percent changes in the price of each input!3 This is a very nice, dual
counterpart to (1), which states that the percent change in output is the share-weighted sum of percent
changes in input. Here, (3) says that the percent change in output cost is the share-weighted sum of percent
changes in input prices.

(Sometimes this result is stated in terms of output prices rather than cost, which is true as long as there
is a constant markup. But for now we aren’t specifying output prices at all, just solving a cost minimization
problem.)

Properties of constant-elasticity-of-substitution (CES) functions. The above results held for any constant-
returns-to-scale function. Now let’s specify F to a constant-elasticity-of-substitution CES function, of the
form

F(x1, . . . , xn) =

(
∑ aix

θ−1
θ

i

) θ
θ−1

(4)

where ai are nonnegative constants and θ > 0 is the elasticity of substitution. Differentiating F with respect
to xi, we obtain

Fi =
θ

θ − 1

(
∑ aix

θ−1
θ

i

) 1
θ−1

· θ − 1
θ

aix
− 1

θ
i

= F
1
θ aix

− 1
θ

i = ai

( xi
F

)− 1
θ (5)

Equating this with pi/ψ = Fi and rearranging gives

xi
F

= aθ
i

(
pi
ψ

)−θ

(6)

i.e. that the ratio of input i to total output has a constant elasticity of −θ with respect to the ratio of input
price pi to output cost ψ. We can also multiply both sides by Fi = pi/ψ to obtain

Fixi
F

= aθ
i

(
pi
ψ

)1−θ

(7)

which states that the input cost share Fixi/F of i has a constant elasticity of 1− θ with respect to pi/ψ. Note
that this implies that the cost share of i is increasing in its relative price in the “complements” case θ < 1,
and decreasing in its relative price in the “substitutes” case θ > 1; it is constant in the Cobb-Douglas case
θ = 1.

3Note that the first equality uses p1x1 + . . .+ pnxn = λy = λF for the denominator, while multiplying the numerator by λFi/pi = 1.
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Adding a productivity shifter. Suppose further that there is some Hicks-neutral productivity parameter
A that scales the production function, so that the production function is now

F(x1, . . . , xn; A) = A
(

∑ aix
θ−1

θ
i

) θ
θ−1

We then have Fi = Aai

(
xi

F/A

)− 1
θ , which equating with pi/ψ = Fi gives

xi
F/A

= aθ
i

(
pi

Aψ

)−θ

(8)

and similarly
Fixi
F

= aθ
i

(
pi

Aψ

)1−θ

(9)

where (8) and (9) are immediate generalizations of (6) and (7).
We note that (9) is particularly nice, since ψ clearly varies inversely with A, so that Aψ is unaffected by

changes in A. Combining (9) with (3), we have to first order that

d log
(

Fixi
F

)
= (1 − θ)

(
d log pi − ∑

j

Fjxj

F
d log pj

)
(10)

i.e. the log change in input share of i equals (1 − θ) times the difference between the log change in input
price i and the share-weighted average log change in input price, with A having no effect.

Sectoral production networks: the perfect competition case4

We now define a static multisector economy where there are N different production sectors. Households
have an endowment L of labor, which will be the unique primary factor of production in the economy, and
maximize some CES aggregate

C = C(c1, . . . , cN) (11)

of the N goods, subject to a budget constraint ∑i pici = wL that equates consumption expenditures with
wage earnings.

Each production sector i ∈ {1, . . . , N} is perfectly competitive and has the technology

yi = Ai fi(Li, {xij}j∈N) (12)

where Ai is a Hicks-neutral productivity shock and fi is a CES aggregate with elasticity of substitution
θi, which takes as inputs labor Li and other goods j (which can include i itself), which are purchased as
intermediates xij.5 Due to perfect competition, the price pi of sector-i output is equated with the constant
cost of production given the technology (12).

4From now on, the notes will roughly follow section 3 onward of Baqaee and Rubbo (2023), and draw heavily from their narration
and notation. For simplicity, however, I impose CES from the beginning, and start with perfect competition rather than markups.
I also use ci to denote consumption and yi to denote production rather than their convention, which is yj for consumption and xj
for production—there is some justification for their convention, but I find it hard to remember and it’s not needed for our simple
purposes.

5Note that in (12) we use the shorthand j ∈ N for j ∈ {1, . . . , N}.
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Market clearing in each sector requires that yi = ci + ∑j xji, i.e. that production of a good equals the
sum of its use in consumption and intermediate inputs.

Some useful concepts: input-output matrix, Leontief inverse, Domar weights. It will be notationally
convenient to treat both consumption and labor as “sectors”, where with some abuse of notation consump-
tion is sector C (given index 0) and labor is sector L (given index N + 1). With this convention, we have
N + 2 sectors: consumption C, the regular production sectors 1, . . . , N, and the labor sector L. We will ex-
tend the notation naturally for each sector (e.g., for the labor sector, we will have yL = L and pL = w), and
we will sometimes use U to denote the set of all N + 2 sectors.

Given some equilibrium of the economy, we define the input-output matrix Ω as the (N + 2)× (N + 2)
matrix

Ωij =
pjxij

piyi
(13)

giving sector i’s expenditures on j as a share of sector j’s sales. Since (i) no sector has consumption as an
input, (ii) labor is just an endowment and has no inputs, and (iii) consumption does not have labor as an
input, the input-output matrix will take the special form

Ω =



0 ΩC1 · · · ΩCN 0

0 Ω11 · · · Ω1N Ω1L

0
...

. . .
...

...
0 ΩN1 · · · ΩNN ΩNL

0 0 · · · 0 0


(14)

that has zeros reflecting (i)–(iii).6

We then define the Leontief inverse as Ψ ≡ (I − Ω)−1, where I is the identity. This satisfies the relation-
ship

Ψ = (I − Ω)−1 = I + Ω + Ω2 + . . . (15)

and sums “direct” (captured in I and Ω) and “indirect” (captured in higher-order Ω2, Ω3, . . .) exposures
through the production network.

In a sense, Ψij measures the fraction of a dollar spent on i that is ultimately spent on j, either directly or
indirectly. First, the identity reflects the fact that the spending is on i in the first place. Then, holding the
input-output matrix fixed, spending on i generates a fraction Ωij of spending on each intermediate good
j. But those intermediate goods themselves require intermediate goods to produce, leading to additional
“second-round” spending measured by [Ω2]ij, and so on.

We define the Domar weight of sector i as the ratio of its sales to total consumption spending in the
economy:

λi =
piyi

∑N
j=1 pjcj

=
piyi
pCC

(16)

6Of course, the input-output matrix Ω is itself an endogenous object, and the exogenous structural parameters in the model are the
coefficients inside each CES production function (i.e. the ai that we saw earlier in (4)). We will sidestep explicitly dealing with these
coefficients, which turns out to be unnecessary. Instead, we will use Ω itself (which has the advantage that it is in principle observable
in the data) as a description of a baseline economy, and then obtain formulas in terms of Ω showing how prices and shares locally
shift around this economy in response to shocks.
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Given this, it turns out that the Leontief inverse Ψ can be written as

Ψ =



1 λ1 · · · λN 1

0 Ψ11 · · · Ψ1N 1

0
...

. . .
...

...
0 ΨN1 · · · ΨNN 1

0 0 · · · 0 1


(17)

It is worth remarking on two aspects of (17), beyond the straightforward points that the first column is all
zeros below the first row (since consumption is not used as an input, no sector except consumption itself
“ultimately spends” on consumption) and the last row is all zeros except the last column (since labor uses
no inputs, it doesn’t “ultimately spend” on anything except itself).

First, the first row of Ψ contains the Domar weights. For all sectors i ̸= C, market clearing requires that
yi = ci +∑N

j=1 xji, which can be rewritten as piyi = pici +∑N
j=1 pjyj

pixji
pjyj

= ∑j∈U pjyjΩji. Dividing both sides
by total consumption, this can be written as λi = ∑j∈U λjΩji. For consumption, on the other hand, we have
λC = 1 by definition, while ΩjC = 0 for all j, so we can write this for all sectors as λi = 1i=C + ∑j∈U λjΩji,
or in vector form as λ′ = e′C + λ′Ω, where eC is the vector with 1 in the 0th entry (corresponding to
consumption) and 0s elsewhere. This can be rearranged as λ′ = e′C(I − Ω)−1 = e′CΨ, and e′CΨ is just the
first row of Ψ.

Formalism aside, this is quite intuitive: consumption is the ultimate source of demand in the economy,
so total spending in a sector i, relative to consumption spending, is just given by the Leontief inverse ΨCi.

Second (and simpler), the final column of Ψ, corresponding to the share ultimately spent on labor, is all
1s. This is because the only factor of production in this economy is labor, so every dollar spent on any good
is ultimately spent, 1-for-1, on labor.

Formally, we can see this by writing Ψ = I + ΩΨ. Then, if we write the last column as ΨeL (where eL

is defined analogously to eC above, a vector with all 0s except a 1 at the final index for labor), this becomes
ΨeL = eL + ΩΨeL, an equation for ΨeL. It is clear that ΨeL = 1 is a solution to this, since Ω1 = 1 − eL:
every row of Ω sums to 1 except the L row, which sums to zero.

Some simple examples. We’ll illustrate some canonical examples of this input-output framework.
First, a horizontal economy is one where all production sectors produce their goods from labor, without

any input-output linkages. Here, we have ΩiL = 1 and Ωij = 0 for all i, j ∈ {1, . . . , N}. Domar weights
λi are given simply by the share ΩCi of each sector in consumption. We also have Ψij = Ωij except when
i = C and j = L.

Second, a simple roundabout economy is one where there is a single production sector 1, which buys
some share Ω11 of intermediate inputs from itself, with the rest coming from labor: Ω1L = 1 − Ω11. It
follows, for instance, that λ1 = ΨC1 = Ψ11 = 1 + Ω11 + Ω2

11 + . . . = 1
1−Ω11

. This was popularized by Basu
(1995) as perhaps the simplest way to introduce intermediate inputs.

Third, a vertical economy is one where each production sector j except N uses the next production
sector’s output as its only input; sector N uses labor as its only input, and the consumer only consumes
sector 1’s output. Hence we have Ωij = 1 if and only if j = i + 1, and Ωij = 0 otherwise.

Note that we have already dealt with a horizontal economy (which we called a “mixture” of different
sectors) and a simple roundabout economy in our discussion of pricesetting models.
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Price determination. With these concepts, we can now solve for prices, which equal costs. From our
earlier result (3), we know that absent technological change, the log change in cost of any sector is given by
the cost share-weighted sum of the change in its input prices. Further, here we have a TFP shifter Ai; cost
will naturally be inversely proportional to Ai. Hence for any i ∈ {0, . . . , N}, we have

d log pi = −d log Ai + ∑
j∈U

Ωijd log pj (18)

For the labor sector i = L, we have d log pi = d log w by definition, and no inputs or productivity shocks.
Hence we can extend (18) to the i = L case by adding a d log w · 1i=L term, and then write as a vector
equation

d log p = −d log A + Ωd log p + d log w · eL (19)

Moving Ωd log p to the left and then multiplying both sides by (I − Ω)−1 = Ψ, we get

d log p = −Ψd log A + d log w · ΨeL

= −Ψd log A + d log w · 1 (20)

where we use ΨeL = 1 from earlier.
(20) shows the usefulness of the Leontief inverse Ψ. An productivity gain in sector j lowers prices

in sector i, relative to wages, in proportion to Ψij, which says how much spending on sector i involves
ultimately spending (directly or indirectly) on sector j.

Note that if we select the row of (20) corresponding to the consumption sector, then using the fact
from earlier that ΨCj = λj (i.e. the first row of the Leontief inverse contains Domar weights), we obtain
d log pC = −∑N

j=1 λjd log Aj + d log w, which can be rewritten as

d log
(

C
L

)
= d log

(
w
pC

)
=

N

∑
j=1

λjd log Aj (21)

where we additionally use the household budget constraint pCC = wL.
(21) states that the change in real wages, or equivalently final productivity in consumption goods over

labor input, is given by the sum of changes in log productivity in each sector, weighted by their Domar
weights. Note that if we choose the aggregate consumption good as the numeraire, setting pC ≡ 1, then
(21) can easily be combined with (20) to fully characterize the change in sectoral prices relative to this
numeraire.

Equation (21) is an instance of a more general result known as Hulten’s theorem, which states that
starting from an undistorted economy, if there is a shock to sector-level productivities, then the resulting
change in log total factor productivity is equal to the Domar-weighted sum of sectoral log productivity
shocks. (Here, we just have one “final output”, consumption, and one factor, labor.)

Hulten’s theorem suggests that if we just want to know the aggregate first-order implications of sector-
level productivity shocks, we don’t really need to know the structure of the input-output network. Instead,
we just need the Domar weights λj, which in principle can easily be measured in the data. This “sufficient
statistic” result means that papers like Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012), which
study how network structure affects the transmission from sectoral to aggregate volatility—but focus on
the first-order aggregate implications—are very interesting but arguably unnecessary. Thanks to (21), if we
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know the underlying variances (and possibly covariances) of sectoral productivities d log Ai, all we need to
know about the network is the resulting λi, which we can measure without knowing anything about the
network!

Of course, as we expand either our questions or the model, things become more complicated. For
one thing, even if it isn’t necessary to obtain aggregate GDP, we might be interested in what happens to
sector-level output and spending—which, is indeed, where we’ll turn next. This requires knowing the full
input-output network and the resulting Leontief inverse.

Further, if in response to a large sectoral productivity shock, the Domar weights λi =
piyi
pCC vary enough,

then the first-order approximation provided by Hulten’s theorem will be a bad one, and we will need to
know second- or higher-order terms to accurately calculate the effect on aggregate productivity. This is the
argument of Baqaee and Farhi (2019).7

Also, Hulten’s theorem only applies starting from an efficient, undistorted economy, where the struc-
ture of production is exactly what a planner would choose. If instead we start from an inefficient economy,
then there are first-order deviations from Hulten’s theorem, arising from the interaction between substi-
tution and preexisting distortions. For instance, if some sector has large markups and thus produces an
inefficiently small quantity, any productivity shock that causes substitution toward that sector will lead to
a first-order improvement in allocative efficiency. A number of prominent papers study this kind of setting,
including Liu (2019), Baqaee and Farhi (2020), and Bigio and La’O (2020). For now, though, we’ll look at
the undistorted econony, without markups.

Quantity and share determination. Above, we saw that the effect of sectoral productivity changes on
prices was relatively straightforward, given directly by the Leontief inverse. Quantities, it turns out, are
more complex—but we can build on the results we’ve already obtained for prices.

We’ll focus our derivation on changes in sales shares, i.e. Domar weights λi, which can ultimately be
combined with our results on prices and aggregate production to obtain sector-level quantities.

Earlier, when we showed that the first row of the Leontief inverse Ψ was λ′, we derived the equation
λ′ = e′C + λ′Ω from market clearing. In response to a shock, we can totally differentiate this equation to
obtain

dλ′ = λ′dΩ + dλ′Ω

dλ′(I − Ω) = λ′dΩ

dλ′ = λ′dΩ(I − Ω)−1 = λ′dΩΨ (22)

Equation (22) says that the change dλ′ in shares equals the original shares λ′ times the change dΩ in inter-
mediate input shares (giving the “direct” change in demand from substitution), times the Leontief inverse
Ψ (which then propagates these changes in demand through the input-output network).

Now we solve for dΩ. For an individual sector i whose technology has an elasticity of substitution θi,

7Note that Hulten’s theorem will holds locally around any point, including the initial equilibrium, the equilibrium following a
shock, and everything in between. To get significant nonlinearities, we need some mix of the shock being really big and the Domar
weights changing a lot. In practice, my guess is that this does not happen much in the short run—and that when it does, there may be
other complications like price being non-allocative and goods being rationed. This certainly does happen if we are looking at longer-
run changes, though. It also helps us understand some hypothetical situations. For instance, the Domar weight on the agricultural
sector in the US is probably less than 1%, but if agricultural productivity suddenly fell by 90%, we would probably starve—even
though Hulten’s theorem implies an effect of final consumption of only a few percent (d log C/L = 1% × d log .1 ≈ −.023)! Here, the
first-order approximation is a really bad one: in a world where basic foodstuffs became that scarce and we were literally starving, food
prices would skyrocket and the Domar weight on the agricultural sector would become close to 1.
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our earlier result (10) implies that

d log Ωij = (1 − θi)

(
d log pj − ∑

k
Ωikd log pk

)
(23)

This can be combined with (22) and our previous solution for prices to fully characterize changes in shares.

Further analytical traction on shares. We can also attempt to go a bit further analytically with (22) and
(23). We write:

dλi = [λ′dΩΨ]i

= ∑
k

λk

(
∑

l
dΩklΨli

)

= ∑
k

λk(1 − θk)

(
∑

l
Ωkl(d log pl − ∑

l′
Ωkl′d log pl′)Ψli

)
= ∑

k
λk(1 − θk)CovΩkl (d log pl , Ψli) (24)

where CovΩkl (d log pl , Ψli) denotes the covariance of d log pl and Ψli across all sectors, weighted by Ωkl .
Now, suppose that we are interested specifically in the effect of a shock d log Aj to productivity in sector

j. Then we note from (20) that d log pl = −Ψl jd log Aj + d log w, where the d log w is constant across all
sectors and will drop out of the covariance. In this case, we can simplify (24) to just

dλi
d log Aj

= ∑
k

λk(θ
k − 1)CovΩkl (Ψl j, Ψli) (25)

a rather nice expression!
Let’s unpack (25). This says that to get the sensitivity of the sector-i share to productivity in sector j, we

need to sum substitution effects arising in each sector k. These effects are proportional to λk, the Domar
weight of each sector, and also to θk − 1, which measures the extent to which substitution in sector k will
change its spending shares. Finally, the key term is CovΩkl (Ψl j, Ψli). This gives the covariance among all
input sectors l to k (weighted by their input shares) between their exposure to the shocked sector, j, and
their exposure to the sector we’re interested in, i.

Why does this covariance matter? The key is whether the input sectors to k that benefit from the productivity
shock in j tend to be the ones that also use more of input i. If this is true, i.e. if the covariance is positive, then
this will contribute to a higher share for input i (because we’ll substitute more toward sectors that use it) if
θk > 1, and a lower share if θk < 1.

One note that is obvious from (25): if every sector in the network is Cobb-Douglas, then all terms are
zero and no shares ever change! This makes solving the model especially easy in this case.

Backing out quantities. The shares, or Domar weights, λi tell us the ratio of nominal sales in each
sector i to the nominal value of total consumption, λi =

piyi
pCC . We know from (20) what happens to rela-

tive prices like pi/pC, and Hulten’s theorem (21) tells us what happens to C itself, so by combining this
information with the change in λi, we can back out the change in the actual quantity yi in each sector if
desired.

8



An application: substitution between capital and labor

The framework and result above are quite general—even more general than we might realize at first! For
instance, the model above only has a single primary factor, labor. But we can tweak it to accommodate
other questions, such as how the economy substitutes between capital and labor.

Suppose that there are now two primary factors, capital K and labor L, in our input-output economy.
Since the economy is efficient, in principle there is some implied (constant returns to scale) production
function C = F(K, L) that optimally uses capital and labor to produce the consumption good. We want to
know the elasticity of substitution θ of this F. This gives the relationship between the capital-labor ratio
and the factors’ relative costs

θ = −d log(K/L)
d log(r/w)

and equivalently the relationship between the ratio of capital and labor shares and the factors’ relative costs

1 − θ =
d log(rK/wL)

d log(r/w)
(26)

θ is thus a very important macro parameter, since it tells us how the relative income shares of capital and
labor will change as their relative costs change (e.g. as interest rates decline and make capital cheaper).

How do we squeeze capital into the input-output model we wrote down, where we had only labor?
Remember, we’re interested in what happens to shares when the ratio r/w of factor costs changes. We can
hardwire a sector K that is “produced” entirely from labor with productivity AK = w/r. Then, the Domar
weight λK will be the capital share of final output, and we can implement (25) in this case with i = j = K to
obtain

dλK
d log AK

= ∑
k

λk(θ
k − 1)VarΩkl (ΨlK)

where the covariance now becomes a variance, because we’re looking at the exposure of capital to itself.
Here, we can think of ΨlK as the overall capital share of sector l, including both direct and indirect expo-
sures.

To connect to expression (26), we note that the capital share is λK = rK/C and what we normally call
the “labor share” is the complement of that, so that rK/wL = λK/(1− λK).8 It follows that d log(rK/wL) =
d log λK − d log(1 − λK) =

dλK
λK

+ dλK
1−λK

= dλK
λK(1−λK)

, so that we can write

1 − θ =
d log(rK/wL)

d log(r/w)

=
dλK/(λK(1 − λK))

−d log AK

=
1

λK(1 − λK)
∑
k

λk(1 − θk)VarΩkl (ΨlK) (27)

which is a simple formula to obtain the aggregate elasticity of substitution between capital and labor. We
could make the notation a bit more evocative by letting α ≡ λK denote the aggregate capital share, and
ᾱl ≡ ΨlK denote the total capital share (including indirect exposures) of production in sector l, so that (27)

8To squeeze capital into the economy, we’re saying that it’s produced from labor, but that’s just a mathematical fiction; we want to
ignore that part of labor here.
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becomes (note that we change ks and ls to is and js here to avoid confusion with capital and labor!):

1 − θ =
1

α(1 − α) ∑
i

λi(1 − θi)VarΩij(ᾱj) (28)

What is the intuition behind (28)? It’s that overall, economy-wide substitution between capital and labor
involves substitution in many different sectors. The contribution from any given sector k depends on its
size λi, its elasticity θi, and the variance of total capital shares among its inputs j—which gives the extent to
which it can meaningfully substitute between sectors of different capital intensity.

An example: two-tier economy. Let’s consider a simple economy where the consumer chooses between
different production sectors, and each production sector substitutes only between capital and labor.

Both the consumption sector and the production sectors will appear in the sum (28). Let’s denote
production sector i’s capital share by αi. Then the consumption sector term in the sum in (28) is just
(1 − θC)Varλi (αi) (where we use the fact that since consumption is the only source of production demand,
ΩCi = λi, and that the Domar weight of consumption is 1).

Further, for a production sector i, there are two inputs: capital, which has input share αi and capital
share 1, and labor, which has input share 1 − αi and capital share 0. The variance is therefore one of a
Bernoulli random variable with probability αi of being 1; this is αi(1 − αi).

Combining these insights, we can specialize (28) to

1 − θ =
1

α(1 − α)

(
(1 − θC)Varλi (αi) +

N

∑
i=1

λi(1 − θi)αi(1 − αi)

)
(29)

This says that aggregate 1 − θ is a weighted sum of the consumer-level substitutability 1 − θC and the indi-
vidual producer-level substitutabilities 1 − θi.

Indeed, it’s possible to show, although we won’t work it out in detail here, that the sum of coefficients
on 1 − θC and 1 − θi in (29) is 1. Hence, we can rearrange (29) to equivalently write

θ =
1

α(1 − α)

(
θCVarλi (αi) +

N

∑
i=1

λiθ
iαi(1 − αi)

)
(30)

This is essentially the result in the well-known and very nice Oberfield and Raval (2021), which applies it
using micro-data in the manufacturing sector.

Just to illustrate the concepts, let’s come up with a numerical example. Suppose that the aggregate
capital share is α = 1/3, but that this is actually the combination of one “capital-intensive” sector with
α1 = 2/3, and one “pure-labor” sector with α2 = 0, each with a half share of production. Then Varλi (αi) is
1/9, λ1α1(1 − α1) = 1/9, λ2α2(1 − α2) = 0, and α(1 − α) = 2

9 . It follows that (30) becomes

θ =
9
2
(

1
9

θC +
1
9

θ1) =
1
2
(θC + θ1)

In short, in this case, the aggregate elasticity of substitution is actually an average of one-half the elasticity
of substitution within the “capital-intensive” sector, and one-half the consumer’s elasticity of substitution.

What’s remarkable about this is that when we think about capital-labor substitutability, we usually think
about firms choosing between capital and labor (and this is the focus of most of the empirical literature).
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But here, an entirely non-production choice—how the consumer substitutes between sectors of different
capital intensities—is equally important! If θC > θ1, then the majority of aggregate capital-labor substitution
will actually come from the consumer’s decisions, rather than the firm’s decisions.

This broadens our view of what we need to look at when we try to measure aggregate elasticities of
substitution—it’s not just direct substitution between factors in a firm that matter, but the indirect effects of
substitution between inputs at other points in the production network, or even (as in this case) substitution
at the consumer level.
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