THE PARETO DISTRIBUTION AND FAT TAILS FOR INCOME AND WEALTH

Econ 411-3 Matthew Rognlie, Spring 2024

WHAT IS A PARETO DISTRIBUTION? SOME MATH

PARETO DISTRIBUTION: CDF AND PDF

$$F(x) = \begin{cases} 1 - \left(\frac{x_m}{x}\right)^{\alpha} & x \ge x_m \\ 0 & x < x_m \end{cases}$$
$$f(x) = \begin{cases} \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}} & x \ge x_m \\ 0 & x < x_m \end{cases}$$

α "Shape parameter"
X_m "Scale parameter" / minimum

PARETO DISTRIBUTION, AN EXAMPLE VISUALIZED (WITH X_M=1)

NICE BASIC PROPERTIES OF THE PARETO DISTRIBUTION

- If you cut it off at some higher x_m, it's still Pareto with the same shape parameter α
- ► The mean, assuming $\alpha > 1$, is given by $\frac{\alpha}{\alpha 1} x_m$
 - ► so if you ask "what's the average wealth among people who hold at least x_m ", the answer is $\alpha/(\alpha 1)$ times x_m
 - ► first moment doesn't exist for $\alpha \leq 1$
 - ▶ in general, only moments greater than α exist

► The log of a Pareto is exponentially distributed

COMPARING VS. LOGNORMAL: DENSITIES

COMPARING VS. LOGNORMAL: DENSITIES

COMPARING VS. LOGNORMAL: COMPLEMENTARY CDF 1-F(X)

ANOTHER NICE FEATURE OF PARETO: "DENSITY OF DOLLARS"

- ► The density of a Pareto is uniquely defined by the fact that it starts at x_m and is proportional to $f(x) \propto x^{-\alpha 1}$
- ► What if we look at density of **dollars** rather than of **people**?
- ► Density of dollars held by people with wealth *x* is proportional to $xf(x) \propto x^{-\alpha}$, Pareto with shape $\alpha 1!$

► So:

- ► if wealth of **people** is Pareto with shape α , then
- ➤ distribution of "how rich are the people who hold each dollar of wealth" is Pareto with shape α − 1

Fatter tail because dollars are more likely to be held by wealthier people!

HOW CAN WE USE THIS FACT?

► Threshold x^* for top *c* percent is given by

$$1 - F(x^*) = c \quad \longrightarrow \quad \left(\frac{x_m}{x^*}\right)^{\alpha} = c \quad \longrightarrow \quad x^* = c^{-1/\alpha} x_m$$

► If you want to ask "what share of dollars are held by the top c percent", use distribution of dollars, which has shape $\alpha - 1$

$$1 - F^{dol}(x^*) = \left(\frac{x_m}{x^*}\right)^{\alpha - 1} = c^{\frac{\alpha - 1}{\alpha}}$$

► So if $\alpha = 1.5$, $c^{\frac{\alpha - 1}{\alpha}} = 0.1^{1/3} = 46\%$ held by top 10%

► Caution: usually Pareto only describes the tail, so absolute shares from this aren't right. But $c^{\frac{\alpha-1}{\alpha}}$ still gives *relative* shares!

LORENZ CURVES (CDF OF DOLLARS VS. CDF OF PEOPLE)

PLOT 1 MINUS THESE CDFS ON LOGARITHMIC SCALE

PARETO TAILS OF INCOME AND WEALTH

PARETO TAILS ARE EVERYWHERE

- ► Not many variables have exact Pareto for entire distribution
 - ► (sharp minimum x_m too unrealistic)
- > But lots have Pareto tail: if we cut off at high x_m , it's Pareto

 Zipf's law, the special case α = 1, famously holds for things like word frequencies and city sizes, over a wide range

► We will be interested in Pareto tails for **income** and **wealth**

WEALTH INEQUALITY: APPROXIMATE PARETO TAIL

Saez and Zucman 2019 update (note wealth inequality is controversial, and they come in on higher end):

► Both imply α between 1.42 and 1.45

INCOME INEQUALITY: APPROXIMATE PARETO TAIL

- Piketty-Saez (2019 update, excluding capital gains):
 - ► Top 10%: 47.12%
 - ► Top 1%: 17.59%
 - ► Top 0.1%: 7.21%
 - ► Top 0.01%: 2.92%
- Solution Back out $\frac{\alpha 1}{\alpha}$ from relative observations, pretty close:

 $\frac{\log(47.12) - \log(17.59)}{\log(10)} \approx 0.428 \qquad \frac{\log(17.59) - \log(7.21)}{\log(10)} \approx 0.387 \qquad \frac{\log(7.21) - \log(2.92)}{\log(10)} \approx 0.393$

- > Second two (more relevant for tail) imply α of about 1.64
 - ► fat tail, but **thinner than wealth**!

WHAT DO THE CALIBRATIONS WE'VE USED IMPLY FOR TAIL WEALTH?

BUT WE HAD LOGNORMAL INCOME, WHAT IF WE HAD PARETO?

- Benhabib, Bisin, Luo (2017) and others: if the income distribution has a Pareto tail, the wealth distribution in the standard incomplete markets model has a Pareto tail with the same Pareto shape parameter
 - ► we had $\alpha = 1.42$ for wealth and $\alpha = 1.64$ for income
 - so we can't match tail wealth inequality even if we recalibrate model to match Pareto for tail income (vs. current lognormal)
 - why this result? asymptotic asset policy function in the model is linear with slope a bit below 1, really high wealth is just driven by getting high incomes a bunch of times, no mechanism for asymptotically higher wealth dispersion
- ► How can we fix this?

- ► Need there to be risk that affects wealth **multiplicatively**
- ► One example: move to continuous time and suppose

$$da_t = [w + (\bar{r} - \bar{c})a_t]dt + \sigma a_t dW_t$$

► Here, \bar{r} is mean return on wealth, \bar{c} is (we'll take exogenous) consumption rate out of wealth, *w* is exogenous wage income, and $\sigma a_t dW_t$ is multiplicative risk to wealth with volatility σ

► Then: wealth distribution has Pareto tail with parameter

$$\alpha = 1 + \frac{\bar{c} - \bar{r}}{\sigma^2/2} > 1$$

(cf Moll's notes on Piketty, <u>https://benjaminmoll.com/</u> <u>wp-content/uploads/</u> 2019/07/piketty_notes.pdf)

ANALYZING THE FORMULA

If we assume income w grows at rate g, then wealth distribution detrended by g has tail

$$\alpha = 1 + \frac{\bar{c} + g - \bar{r}}{\sigma^2/2} > 1$$

- ► One basis of Thomas Piketty talking about $\bar{r} g$ and wealth inequality, since fatter tail when $\bar{r} g$ larger
- ► Also fatter tail when shocks σ larger

A SIMPLER MODEL: PART 1

- ► Still continuous time
- ► Assume at date *t*, new people are born at rate e^{nt}
 - ► *n* is rate of growth of newborn population
- > Death occurs, and any wealth dissipates, at constant rate μ
- So, at any *t*, the age-*j* cohort has population size $e^{n(t-j)-\mu j}$
 - So, within the population at *t*, the distribution of ages is exponential, with CDF $F(j) = 1 e^{-(n+\mu)j}$

Can think of this model loosely as characterizing large intergenerational accumulations of wealth, not just literal lives

A SIMPLER MODEL: PART 2

- > Assume new people born at *t* start with wealth $e^{\gamma t}$
- ► Wealth earns return \bar{r} , people consume from it at rate \bar{c}
- ► So, wealth of age-*j* people at time *t* is $a_{jt} = e^{\gamma(t-j) + (\bar{r} \bar{c})j}$
 - ► We'll assume that $\bar{r} > \bar{c} + \gamma$, so older are richer
- ► Fraction of population older than *j* is $e^{-(n+\mu)j}$
- ► So, if G_t is CDF of *wealth* at date *t*, we have:

$$1 - G_t(a_{jt}) = e^{-(n+\mu)j} \qquad j = \frac{\log a_{jt} - \gamma t}{\bar{r} - \bar{c} - \gamma}$$

$$1 - G_t(a_{jt}) \propto a_{jt}^{-\frac{n+\mu}{\bar{r} - \bar{c} - \gamma}}$$

A SIMPLER MODEL: CONCLUSION

► Any asset level $a \ge a_{0t}$ corresponds to some age *j*, so last slide gave us a formula for distribution G_t :

$$1 - G_t(a) \propto a^{-\frac{n+\mu}{\bar{r}-\bar{c}-\gamma}}$$

> This is **Pareto** with shape parameter $\alpha = \frac{n + \mu}{\bar{r} - \bar{c} - \gamma}$

- In general, we get Pareto from exponential growth over exponentially distributed time, like we have here
- > α is falling in \bar{r} : higher returns increase thickness of wealth tail
- > α is rising in \bar{c} , γ , n, and μ : higher consumption rates, faster growth, and more dissipation of wealth decrease thickness of wealth tail