THE PARETO DISTRIBUTION AND FAT TAILS FOR INCOME AND WEALTH

Econ 411-3 Matthew Rognlie, Spring 2024

WHAT IS A PARETO **DISTRIBUTION? SOME MATH**

PARETO DISTRIBUTION: CDF AND PDF

$$
F(x) = \begin{cases} 1 - \left(\frac{x_m}{x}\right)^{\alpha} & x \ge x_m \\ 0 & x < x_m \end{cases}
$$

$$
f(x) = \begin{cases} \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}} & x \ge x_m \\ 0 & x < x_m \end{cases}
$$

α "Shape parameter" xm "Scale parameter" / minimum

PARETO DISTRIBUTION, AN EXAMPLE VISUALIZED (WITH X_M=1)

NICE BASIC PROPERTIES OF THE PARETO DISTRIBUTION

- \blacktriangleright If you cut it off at some higher x_m , it's still Pareto with the same shape parameter *α*
- \blacktriangleright The mean, assuming $\alpha > 1$, is given by *α α* − 1 *xm*
	- ➤ so if you ask "what's the average wealth among people who hold at least x_m ", the answer is $\alpha/(\alpha - 1)$ times x_m
	- Solution first moment doesn't exist for $\alpha \leq 1$
	- \blacktriangleright in general, only moments greater than α exist

➤ The **log** of a Pareto is **exponentially distributed**

COMPARING VS. LOGNORMAL: DENSITIES

COMPARING VS. LOGNORMAL: DENSITIES

COMPARING VS. LOGNORMAL: COMPLEMENTARY CDF 1-F(X)

ANOTHER NICE FEATURE OF PARETO: "DENSITY OF DOLLARS"

- ➤ The density of a Pareto is uniquely defined by the fact that it starts at x_m and is proportional to $f(x) \propto x^{-\alpha-1}$
- ➤ What if we look at density of **dollars** rather than of **people**?
- \blacktriangleright Density of dollars held by people with wealth x is proportional to $xf(x) \propto x^{-\alpha}$, Pareto with shape $\alpha - 1!$

\triangleright So:

- \triangleright if wealth of people is Pareto with shape α , then
- ➤ distribution of "how rich are the people who hold each **dollar** of wealth" is Pareto with shape $\alpha - 1$

Fatter tail because dollars are more likely to be held by wealthier people!

HOW CAN WE USE THIS FACT?

 \blacktriangleright Threshold x^* for top c percent is given by

$$
1 - F(x^*) = c \qquad \qquad \left(\frac{x_m}{x^*}\right)^\alpha = c \qquad \qquad x^* = c^{-1/\alpha} x_m
$$

➤ If you want to ask "what share of dollars are held by the top c percent", use distribution of dollars, which has shape $\alpha-1$

$$
1 - F^{dol}(x^*) = \left(\frac{x_m}{x^*}\right)^{\alpha - 1} = c^{\frac{\alpha - 1}{\alpha}}
$$

So if $\alpha = 1.5$, $c^{\frac{a}{\alpha}} = 0.1^{1/3} = 46\%$ held by top $\frac{\alpha-1}{\alpha} = 0.1^{1/3} = 46\,\%$ held by top $10\,\%$

➤ Caution: usually Pareto only describes the tail, so absolute shares from this aren't right. But $c^{\frac{1}{\alpha}}$ still gives *relative* shares! *α* − 1 *α*

LORENZ CURVES (CDF OF DOLLARS VS. CDF OF PEOPLE)

PLOT 1 MINUS THESE CDFS ON LOGARITHMIC SCALE

PARETO TAILS OF INCOME AND WEALTH

PARETO TAILS ARE EVERYWHERE

- ➤ Not many variables have exact Pareto for entire distribution
	- \blacktriangleright (sharp minimum x_m too unrealistic)
- \blacktriangleright But lots have Pareto tail: if we cut off at high x_m , it's Pareto

 \blacktriangleright Zipf's law, the special case $\alpha = 1$, famously holds for things like word frequencies and city sizes, over a wide range

➤ We will be interested in Pareto tails for **income** and **wealth**

WEALTH INEQUALITY: APPROXIMATE PARETO TAIL

➤ Saez and Zucman 2019 update (note wealth inequality is controversial, and they come in on higher end):

 \blacktriangleright Both imply α between 1.42 and 1.45

INCOME INEQUALITY: APPROXIMATE PARETO TAIL

- ➤ Piketty-Saez (2019 update, excluding capital gains):
	- \blacktriangleright Top 10\%: 47.12\%
	- \blacktriangleright Top 1\%: 17.59\%
	- \blacktriangleright Top 0.1%: 7.21%
	- \blacktriangleright Top 0.01\%: 2.92\%
- ► Back out $\frac{u}{v}$ from relative observations, pretty close: $\alpha - 1$ *α*

log(47.12) − log(17.59) log(10) ≈ 0.428 $\frac{\log(17.59) - \log(7.21)}{1.60}$ log(10) $\approx 0.387 \frac{\log(7.21) - \log(2.92)}{1-(1.0)}$ log(10) ≈ 0.393

- Second two (more relevant for tail) imply α of about 1.64
	- ➤ fat tail, but **thinner than wealth!**

WHAT DO THE CALIBRATIONS WE'VE USED IMPLY FOR TAIL WEALTH?

BUT WE HAD LOGNORMAL INCOME, WHAT IF WE HAD PARETO?

- ➤ Benhabib, Bisin, Luo (2017) and others: if the income distribution has a Pareto tail, the wealth distribution in the standard incomplete markets model has a Pareto tail **with the same Pareto shape parameter**
	- we had $\alpha = 1.42$ for wealth and $\alpha = 1.64$ for income
	- ➤ so we can't match tail wealth inequality even if we recalibrate model to match Pareto for tail income (vs. current lognormal)
	- ➤ why this result? asymptotic asset policy function in the model is linear with slope a bit below 1, really high wealth is just driven by getting high incomes a bunch of times, no mechanism for asymptotically higher wealth dispersion
- ➤ **How can we fix this?**
- ➤ Need there to be risk that affects wealth **multiplicatively**
- ➤ One example: move to continuous time and suppose

$$
da_t = [w + (\bar{r} - \bar{c})a_t]dt + \sigma a_t dW_t
$$

 \blacktriangleright Here, \bar{r} is mean return on wealth, \bar{c} is (we'll take exogenous) consumption rate out of wealth, w is exogenous wage income, and $\sigma a_t dW_t$ is multiplicative risk to wealth with volatility σ

➤ Then: wealth distribution has Pareto tail with parameter

$$
\alpha = 1 + \frac{\bar{c} - \bar{r}}{\sigma^2/2} > 1
$$

(cf Moll's notes on Piketty, [https://benjaminmoll.com/](https://benjaminmoll.com/wp-content/uploads/2019/07/piketty_notes.pdf) [wp-content/uploads/](https://benjaminmoll.com/wp-content/uploads/2019/07/piketty_notes.pdf) [2019/07/piketty_notes.pdf\)](https://benjaminmoll.com/wp-content/uploads/2019/07/piketty_notes.pdf)

ANALYZING THE FORMULA

➤ If we assume income w grows at rate g, then wealth distribution detrended by g has tail

$$
\alpha = 1 + \frac{\bar{c} + g - \bar{r}}{\sigma^2/2} > 1
$$

- ► One basis of Thomas Piketty talking about \bar{r} g and wealth inequality, since fatter tail when $\bar{r}-g$ larger
- ► Also fatter tail when shocks σ larger

A SIMPLER MODEL: PART 1

- ➤ Still continuous time
- ► Assume at date *t*, new people are born at rate e^{nt}
	- \blacktriangleright *n* is rate of growth of newborn population
- ➤ Death occurs, and any wealth dissipates, at constant rate *μ*
- \triangleright So, at any *t*, the age-*j* cohort has population size $e^{n(t-j)-\mu j}$
	- \blacktriangleright So, within the population at t , the distribution of ages is exponential, with CDF $F(j) = 1 - e^{-(n + \mu)j}$

➤ Can think of this model loosely as characterizing large intergenerational accumulations of wealth, not just literal lives

A SIMPLER MODEL: PART 2

- \triangleright Assume new people born at *t* start with wealth $e^{\gamma t}$
- \blacktriangleright Wealth earns return \bar{r} , people consume from it at rate \bar{c}
- ► So, wealth of age-*j* people at time *t* is $a_{jt} = e^{\gamma(t-j)+(r-\bar{c})j}$
	- \blacktriangleright We'll assume that $\bar{r} > \bar{c} + \gamma$, so older are richer
- ➤ Fraction of population older than is *j e*−(*n*+*μ*)*^j*
- \triangleright So, if G_t is CDF of *wealth* at date *t*, we have:

$$
1 - G_t(a_{jt}) = e^{-(n+\mu)j}
$$

$$
j = \frac{\log a_{jt} - \gamma t}{\overline{r} - \overline{c} - \gamma}
$$

$$
1 - G_t(a_{jt}) \propto a_{jt}^{-\frac{n+\mu}{\overline{r} - \overline{c} - \gamma}}
$$

A SIMPLER MODEL: CONCLUSION

Any asset level $a \ge a_{0t}$ corresponds to some age *j*, so last slide gave us a formula for distribution G_t :

$$
1-G_t(a) \propto a^{-\frac{n+\mu}{\bar{r}-\bar{c}-\gamma}}
$$

 \blacktriangleright This is Pareto with shape parameter $\alpha =$ *n* + *μ* $\bar{r}-\bar{c}-\gamma$

- ➤ In general, we get Pareto from *exponential growth over exponentially distributed time,* like we have here
- \triangleright *a* is falling in \bar{r} : higher returns increase thickness of wealth tail
- \triangleright *α* is rising in \bar{c} , γ , *n*, and μ : higher consumption rates, faster growth, and more dissipation of wealth decrease thickness of wealth tail