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AVERAGE ASSET-HOLDINGS EXTREMELY CORRELATED WITH AGE!A. Changing population distributions over a fixed 2016 age-wealth profile
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B. Changing population distributions over a fixed 2016 age-labor income profile

Figure 4: US age-wealth and labor income profiles with population age distributions

Notes: The solid lines in Panel A show the 2016 US age-wealth profiles from the SCF, expressed in current
USD. The solid lines in panel B show the 2016 age-income profile from the LIS (CPS), expressed in current
USD. Bars represent age distributions: 1950 age distribution in the left panels, 2016 age distribution in the
middle panels, and 2100 age distribution in the right panels.

Unpacking the compositional effect: the case of the United States. The compositional
effect reflects the interaction between population aging and the shapes of the wealth and
income profiles. To help explain the magnitudes that we find, we study the case of the
United States in greater detail.

The main mechanisms are summarized in figure 4. The grey bars show the evolution
of the population distribution, starting young in 1950 and growing progressively older
over time. In the figure, this population evolution is superimposed with the 2016 profiles
of assets and labor income, with panel A illustrating how demographic change pushes
up assets by moving individuals into high asset ages, and panel B illustrating how demo-
graphic change first pushes up aggregate labor income as the baby boomers reach middle
age—the so-called “demographic dividend” (Bloom et al., 2003)—and later pushes down
aggregate labor income as more individuals reach old age.

The total compositional effect can be separated into contributions from assets and la-

20

Interestingly, 
average wealth 

reaches a plateau, 
rather than being 

drawn down, 
around retirement 

age

On average, people prior to 
middle age hold almost zero 

wealth.

(Figures from “Demographics, Wealth, and 
Global Imbalances in the Twenty-First 

Century”;this is for US, but similar 
elsewhere)



DISTINCT BUT ALSO VERY STRONG PATTERN IN LABOR INCOME

A. Changing population distributions over a fixed 2016 age-wealth profile

B. Changing population distributions over a fixed 2016 age-labor income profile
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Figure 4: US age-wealth and labor income profiles with population age distributions

Notes: The solid lines in Panel A show the 2016 US age-wealth profiles from the SCF, expressed in current
USD. The solid lines in panel B show the 2016 age-income profile from the LIS (CPS), expressed in current
USD. Bars represent age distributions: 1950 age distribution in the left panels, 2016 age distribution in the
middle panels, and 2100 age distribution in the right panels.

Unpacking the compositional effect: the case of the United States. The compositional
effect reflects the interaction between population aging and the shapes of the wealth and
income profiles. To help explain the magnitudes that we find, we study the case of the
United States in greater detail.

The main mechanisms are summarized in figure 4. The grey bars show the evolution
of the population distribution, starting young in 1950 and growing progressively older
over time. In the figure, this population evolution is superimposed with the 2016 profiles
of assets and labor income, with panel A illustrating how demographic change pushes
up assets by moving individuals into high asset ages, and panel B illustrating how demo-
graphic change first pushes up aggregate labor income as the baby boomers reach middle
age—the so-called “demographic dividend” (Bloom et al., 2003)—and later pushes down
aggregate labor income as more individuals reach old age.

The total compositional effect can be separated into contributions from assets and la-
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Average labor 
income is bell-

shaped, rising to 
reach a sustained 

mid-life peak, then 
falling rapidly as 

retirement kicks in.



GLOBAL POPULATION IS RAPIDLY AGING

A. Share of 50+ year-olds B. Private wealth-to-GDP ratios
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C. Ex-ante real returns D. Net international investment positions

Figure 1: Demographics, wealth, interest rates and global imbalances

Notes: Panel A presents the share of 50+ year-olds in the five largest economies by GDP and the world
as a whole (source: 2019 UN World Population Prospects, the projection is the central scenario). Panel B
presents private wealth-to-GDP ratios (source: World Inequality Database; *: national wealth-to-GDP ratio
in India). Panel C presents a measure of the US total return on wealth (orange line) and of the US safe
rate of return (red line). Details on the construction of these series are in appendix A. Panel D presents net
international investment positions normalized by GDP (source: IMF).

of assets and labor income fixed. In a baseline overlapping generations (OLG) model,
this is a sufficient statistic for the actual change in wealth-to-GDP for a small open econ-
omy. Further, for a world economy, the compositional effect—when aggregated across
countries, and combined with elasticities of asset supply and demand that we obtain
with other sufficient statistic formulas—fully pins down the general equilibrium effect on
wealth-to-GDP, asset returns, and global imbalances.

We measure the compositional effect by combining population forecasts with house-
hold survey data from 25 countries over the period 2016–2100. We find that it is positive

3

This is due to a 
combination of 

increasing 
longevity and 

falling fertility, 
with fertility 
likely to be 

biggest 
contributor. 
(This is from 

2019 UN 
projections; 
updated 

figures likely 
more extreme!)



ONLY GETTING MORE EXTREME WITH TIME…

(A total fertility 
rate of 0.72 is 
about 1/3 of 

replacement rate; 
each successive 

generation will be 
1/3 the size of its 

predecessor.)



IMPLIES A MASSIVE SHIFT IN RELATIVE AGE STRUCTURE

Only starting to 
become visible, but 

if today’s babies 
are 1/3 as 

numerous as the 
30-year-olds, then 
there will be ~1/3 
as many 40-year 

olds to provide for  
70-year olds)



HAPPENING BROADLY ACROSS MOST PARTS OF THE WORLD

Blue colors mean below-replacement fertility, where (absent 
immigration) older generations will outnumber younger ones. 



A MAJOR INCREASE IN ASSET DEMAND…

Where do these large e�ects come from? Alt. pro�les

• In paper: separate contribution of numerator and denominator
• Going forward: W contributes ⇠ �/�, Y contributes ⇠ �/�
• Historically demographic dividend pushed Y up, reversed in ����

��

Big projected shift 
in population 

distribution to 
older ages, who 
hold lots more 

assets.



AND A MAJOR DECREASE IN LABOR SUPPLY?

Where do these large e�ects come from? Alt. pro�les

• In paper: separate contribution of numerator and denominator
• Going forward: W contributes ⇠ �/�, Y contributes ⇠ �/�
• Historically demographic dividend pushed Y up, reversed in ����

��

Shift toward older 
ages who earn very 
little labor income, 

suggesting a 
decline in effective 

per capita labor 
supply (unless 

retirement happens 
much later!)



TWO BIG REASONS TO STUDY MODELS WITH EXPLICIT LIFE CYCLE

➤ First, it’s a crucial aspect of real-life consumption-saving 
behavior


➤ one of the main motivations to save is to build assets for 
retirement (and sometimes bequests)


➤ age is one conspicuous dimension of heterogeneity in asset 
holdings


➤ Second, the shift to a much older population is itself a huge 
shock, maybe the biggest macro shock we’ll expect to face


➤ huge increase in asset demand, decrease in effective labor 
supply



A CANONICAL LIFE-
CYCLE MODEL

(Simplified version of model in section 2 of “Demographics, Wealth, and Global 
Imbalances in the Twenty-First Century”, with idiosyncratic risk removed.)



A CANONICAL LIFE-CYCLE MODEL

➤ Age  is beginning of (adult) life,  maximum possible


➤ Survive from  to  with probability , define cumulative 

survival probability  up to age , with 


➤ Earn exogenous income  at age , no other risk


➤ Start life with , choose paths of 

j = 0 j = J

j j + 1 ϕj

Φj ≡
j−1

∏
k=0

ϕk j Φ0 = 1

yj j

a0 = 0 {cj, aj+1}



A CANONICAL LIFE-CYCLE MODEL: FULL OPTIMIZATION PROBLEM

➤ CRRA preferences with EIS 


➤ Utility at age  scaled by survival probability, , and shifter  for generality 
(geometric discounting  special case)


➤ Key feature: to save  for next period, only need to spend  today, 
scaled by probability  of survival


➤ i.e. all saving is done via actuarially fair “annuity” accounts

σ

j Φj βj

βj ≡ β j

aj+1 ϕjaj+1

ϕj

max
{cj,aj}

J

∑
j=0

βjΦj
c1− 1

σ
j − 1

1 − 1
σ

s.t. cj + ϕjaj+1 = yj + (1 + r)aj

a0 = 0



INTERTEMPORAL EULER EQUATION

max
{cj,aj}

J

∑
j=0

βjΦj
c1− 1

σ
j − 1

1 − 1
σ

s.t. cj + ϕjaj+1 = yj + (1 + r)aj

βjΦjc−1/σ
j =

1 + r
ϕj

βj+1Φj+1c−1/σ
j+1

(Euler equation between consumption at j and j+1)

Survival odds cancel out since !Φj+1 = ϕjΦj

βjc−1/σ
j = (1 + r)βj+1c−1/σ

j+1

βjc−1/σ
j = (1 + r)k−jβkc−1/σ

k

(Euler equation between 
consumption at any j and k)



PRESENT-VALUE INTERTEMPORAL BUDGET CONSTRAINT

cj + ϕjaj+1 = yj + (1 + r)aj

(1 + r)−jΦj(yj − cj) = (1 + r)−jΦj+1aj+1 − (1 + r)−j+1Φjaj

Multiply by  and rearrange(1 + r)−jΦj

J

∑
j=0

(1 + r)−jΦj(yj − cj) =
J

∑
j=0

(1 + r)−jΦj+1aj+1 −
J

∑
j=0

(1 + r)−j+1Φjaj

Sum across all j = 0,…, J

Given  and , these two sums have 
the same nonzero terms, and cancel out
a0 = 0 ΦJ+1 = 0

J

∑
j=0

(1 + r)−jΦj(yj − cj) = 0
A simple survival-weighted present-value 

budget constraint!



SUMMARY OF RESULTS SO FAR
➤ Intertemporal Euler equation between any pair of ages:


➤ (Survival-weighted) present-value budget constraint:


➤ Together these characterize the solution to the model!


➤ Ultimately very simple: individuals effectively have complete 
markets with respect to longevity, and can choose what fraction 
of expected lifetime resources to allocate to each age

βjc−1/σ
j = (1 + r)k−jβkc−1/σ

k

J

∑
j=0

(1 + r)−jΦj(yj − cj) = 0



COMPUTATION
➤ Write consumption at each j in terms of age-0 consumption:


➤ Plug into budget constraint and solve for :


➤ (Then use this  to calculate all .)

c0

c0 cj = θjc0

cj = (1 + r)σj(
βj

β0 )
σ

≡θj

c0

c0 =
∑J

j=0 (1 + r)−jΦjyj

∑J
j=0 (1 + r)−jΦjθj



COMPUTATION, CONTINUED

➤ Once we have  at all ages from last slide, we can iterate on 
budget constraint to obtain  at all ages


➤ Numerically more stable to iterate backward from end of life, 
starting with initial condition :


➤ We’ll now try a simple application using empirically realistic 
“Gompertz” survival function for  and a roughly reasonable 
bell shape for income , plus ,  and , 
with , and  corresponding to age 20

cj

aj

ϕJaJ+1 = 0

Φj

yj σ = 1 r = 0.03 βj = 0.99 j

j = 0,…,99 j = 0

aj =
cj − yj + ϕjaj+1

1 + r



CONSUMPTION AND INCOME LIFECYCLE TRAJECTORIES

This implies slight debt early in 
life, asset accumulation peaking 
in middle age, and consumption 
exceeding labor income starting 

right before age 60

With simple geometric 
discounting, consumption slopes 
up here (gently in any one year, 
but dramatically over lifetime!) 

because  exceeds 1 + r β−1



ASSET LIFECYCLE TRAJECTORY

Slight debt early in life until 
about age 40, then rapid 

accumulation, peak by age 70, 
then some decline (but gentler 

than the increase)



NOT BAD, BUT NOT PERFECT COMPARED TO DATAA. Changing population distributions over a fixed 2016 age-wealth profile
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B. Changing population distributions over a fixed 2016 age-labor income profile

Figure 4: US age-wealth and labor income profiles with population age distributions

Notes: The solid lines in Panel A show the 2016 US age-wealth profiles from the SCF, expressed in current
USD. The solid lines in panel B show the 2016 age-income profile from the LIS (CPS), expressed in current
USD. Bars represent age distributions: 1950 age distribution in the left panels, 2016 age distribution in the
middle panels, and 2100 age distribution in the right panels.

Unpacking the compositional effect: the case of the United States. The compositional
effect reflects the interaction between population aging and the shapes of the wealth and
income profiles. To help explain the magnitudes that we find, we study the case of the
United States in greater detail.

The main mechanisms are summarized in figure 4. The grey bars show the evolution
of the population distribution, starting young in 1950 and growing progressively older
over time. In the figure, this population evolution is superimposed with the 2016 profiles
of assets and labor income, with panel A illustrating how demographic change pushes
up assets by moving individuals into high asset ages, and panel B illustrating how demo-
graphic change first pushes up aggregate labor income as the baby boomers reach middle
age—the so-called “demographic dividend” (Bloom et al., 2003)—and later pushes down
aggregate labor income as more individuals reach old age.

The total compositional effect can be separated into contributions from assets and la-

20

In aggregate, 
younger people 

don’t really go into 
debt, and older 

people don’t really 
draw down their 

assets

Alternative: can calibrate  directly to hit asset profile from 
data, though this implies very high consumption at old age.

βj



TAKING STOCK: STRENGTHS AND WEAKNESSES OF THE MODEL
➤ Model lets us incorporate mortality risk and life-cycle patterns 

in income


➤ In simple example, leads to life-cycle path of assets that 
looks roughly right, but misses some important dimensions


➤ What’s missing from the model?


➤ Borrowing constraints and income risk, and any other 
forces generating heterogeneity within cohort


➤ Bequests—big saving motivation for older rich


➤ Social security system providing government-funded 
income to old (Won’t add in this lecture, but all these appear in Section 5 

quantitative model in “Demographics, Wealth…” paper)



AGGREGATE 
CONSEQUENCES



LOOK AT AGGREGATE STEADY-STATE MODEL
➤ We’ll now proceed like we did with the standard incomplete 

markets model


➤ Think of this life-cycle model as existing in a world of 
“overlapping generations”, where people of all ages live 
together


➤ Concretely, suppose that we are in a “demographic steady 
state”, where the number of “newborns” (age 0) grows at a 
constant rate 


➤ Then steady-state age distribution given by 


➤ More young in population when  is high, and vice versa


➤ We’ll use  as our baseline for simplicity

g

πj ∝ (1 + g)−jΦj

g

g = 0



AGGREGATE ASSET DEMAND

Aggregate asset demand is 
increasing in the interest rate, but 

(unlike SIM) here can go 
negative since there is no 

borrowing constraint, and 
because lives are finite doesn’t 

asymptote to infinity at 
!β(1 + r) = 1



HOW SENSITIVE ARE ASSETS TO INTEREST RATES?

Fairly stable semielasticity of asset 
demand with respect to interest rates 

once assets become high enough (below 
 here, semielasticity rises 

because assets get close to zero); sharp 
contrast to SIM, where semielasticity 
was extremely high once we wanted to 

match high assets

r = 0.03

(Interpretation of semielasticity of 34: steady-
state increase in r of 1 percentage point leads to 

40% increase in assets)



HOW CAN WE UNDERSTAND THESE MAGNITUDES?

➤ Define  as a random variable giving “at what age is a random dollar 
of assets in the economy held”. Similar for .


➤ Result (AMMR): if , then locally we have:


➤ Intuition:  gives substitution effect, and is proportional to C, EIS , 
and the variance of ages at which goods are consumed; latter gives the 
scope for substitution


➤  gives income effect: higher r means we earn more at the (older) ages 
when we hold assets, and we use this income to scale up consumption at 
all ages; on average, this cuts assets by 

Agea
Agec

r = g = 0

ϵd,sub
r σ

ϵd,inc
r

𝔼[Agec] − 𝔼[Agea]

ed
r = σ

C
A

Var(Agec)

≡ϵd,sub
r

+ 𝔼[Agec] − 𝔼[Agea]

≡ϵd,inc
r



IMPLEMENTING THIS CALCULATION FOR EXAMPLE CALIBRATION

ed
r = σ

C
A

Var(Agec)

≡ϵd,sub
r

+ 𝔼[Agec] − 𝔼[Agea]

≡ϵd,inc
r

, C/A=.135, σ = 1 Var(Agec) = 400
ϵd,sub

r = 54
𝔼[Agec] = 59.3, 𝔼[Agea] = 67.6

ϵd,inc
r = − 8.3

ϵd
r = 45.7

(vs. actual ϵd
r = 40.1)

Not exact because we don’t have  here (instead ), but roughly 
right. Clarifies the two opposing forces: a powerful substitution effect that 

scales with the EIS and variance of consumption over lifecycle, and a 
generally negative but weaker income effect, as people need to save less for 

retirement when they’ll earn a higher return on their assets.

r = 0 r = 0.03

(Note: generalized version of 
exact result holds whenever r-
g=0, where g includes pop & 

tech growth; in practice, can be 
pretty accurate.)



APPLICATION: EFFECT OF 
CHANGES IN POPULATION 

GROWTH ON INTEREST RATES



APPLICATION: CHANGE IN POPULATION GROWTH RATE (FERTILITY)

➤ Exactly as in the Aiyagari model, if we close the model by 
assuming that all assets are capital, we get an equilibrium 
condition of the form


➤ Here,  is aggregate household asset demand divided by 
labor income, and we make its dependence on population 
growth explicit by including  as an argument


➤ Same results as with Aiyagari, e.g. if shock to  then:

a(r, g)

g

g

a(r, g) =
k(r)
w(r)

dr = −
ϵd

g dg
ϵd

r + ϵs
r



WHAT’S DIRECT EFFECT OF G ON ASSETS?

➤ A change in population growth  doesn’t directly change 
assets or labor earnings at any age, it just changes the 
composition of the population


➤ Can show that we have simply:


➤ Intuitively, why is this? A fall in  shifts population 
distribution toward older ages, and to the extent assets are 
held by older people than labor income is, this raises the 
asset-to-labor-income ratio 

g

g

ϵd
g = − (1 + g)−1(𝔼[Agea] − 𝔼[Agey])

≈ − (67.6 − 47.4) = 20.2



CONCLUSION: OVERALL EFFECT OF G DECLINE?

➤ We calculate (using ):


➤ So here, a decline in the population growth rate from 0% to 
-1% will cause a decline of about 40 basis points in real interest 
rates


➤ Growth of -1% corresponds to shrinking by 26% each 30-year 
generation (or total fertility of ), similar to many 
developed countries today—but not nearly as low as the lowest 
(e.g. Korea)

ϵs
r = 1/(r + δ) = 1/(0.03 + 0.05)

2.1/e.3 ≈ 1.55

dr
dg

= −
ϵd

g

ϵd
r + ϵs

r
=

20.2
40.1 + 12.5

≈ 0.384



SENSITIVITY TO PARAMETERS

➤ If we keep the same calibration but change the EIS  to 0.5, perhaps a 
more reasonable value in the literature:


➤ Now we’re closer to a percentage-point effect on r:


➤ Why? Mainly because smaller  shrinks , but also assets more 
disproportionately held by old (less substitution toward consumption 
when old). These larger effects fairly reasonable.

σ

σ ϵd
r

ϵd
g = − (𝔼[Agea] − 𝔼[Agey])

≈ − (74.9 − 47.4) = 27.5

dr
dg

= −
ϵd

g

ϵd
r + ϵs

r
=

27.5
21.0 + 12.5

≈ 0.82


