
Solutions to review problems for 411-3 midterm

Problem 1: Gini coefficients

Case a: uniform. The average wealth1 held by people in a uniform distribution [x, x] is (x + x)/2.2 Let’s
index people by their percentile i ∈ [0, 1] in the distribution. The amount of wealth held by someone at
percentile i is then x + (x − x)i, and the share of total wealth held by people of percentile c and below is
then
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The relationship (1) between percentile of the distribution and total wealth held under that percentile is the
Lorenz curve. Integrating from 0 to 1, the total area under the Lorenz curve is
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Then, the Gini coefficient equals 1− 2A, i.e. twice the difference between the maximum possible area under
the Lorenz curve (1/2) and the actual area A. Implementing this, we get
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The expression (2) gives us the Gini coefficient. It’s remarkably simple. If x is not below zero (i.e. no one
has negative wealth), then we see that x−x

x+x ≤ x−x
x ≤ 1, so that the maximum possible Gini coefficient when

wealth is uniformly distributed on the interval [x, x] is 1
3 , which is attained whenever x = 0. When the gap

between x and x is smaller compared to their scale, then the Gini coefficient is lower.

Case b: Pareto. We could do an analysis similar to above, but instead we’ll use a trick that we mentioned
in class, which is that if wealth is distributed Pareto across people with shape α, the Pareto distribution of
“how rich is the person who holds a random dollar of wealth” is Pareto with shape α − 1.

If we denote the CDF of the former by F and of the latter by G, and the minimum of the support of the

1What the distribution is measuring is unspecified in the question, and it could be income or anything else, but I’ll call it “wealth”
as a placeholder.

2There was some terminological ambiguity here, since people sometimes talk about a “uniform distribution” in the context of
wealth as meaning that everyone has the same wealth, in which case the Gini coefficient is zero. Here I literally meant a uniform
distribution on the interval [x, x], with constant density 1/(x − x) on the interval and zero elsewhere.
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Pareto distribution by x, then we have

1 − F(x) =
(

x
x

)−α

1 − G(x) =
(

x
x

)−(α−1)

which combined gives
1 − G(x) = (1 − F(x))(α−1)/α

The Lorenz curve is the relationship between G and F; letting c be the percentile of the individual wealth
distribution, so that F(x) = c, then the Lorenz curve is G(F−1(c)), or

1 − (1 − c)(α−1)/α

Integrating with respect to c from 0 to 1, the area under this is
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Then, the Gini coefficient is

Gini = 1 − 2A =
2α

2α − 1
− 1 =

1
2α − 1

(3)

We note that this approaches 1 (perfect inequality) as α → 1 from above. This makes sense, because α ≤ 1
has infinite mean (in which case wealth is infinite and this is undefined), and as we approach it, more and
more wealth is held by the extreme richest.

In general, the Gini coefficient is decreasing as we make α higher and the tail thinner, which also makes
sense. In the limit α → ∞, all the mass of the Pareto distribution becomes concentrated around x, and we
have perfect equality, and accordingly (3) gives a Gini coefficient of 0.
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Problem 2: Pareto

We recall from class that the mean of a Pareto distribution with shape parameter α and minimum x is α
α−1 x.

Hence M = α
α−1 , which we can invert to obtain α as a function of M:
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α

α − 1
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α
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α = (1 − M−1)−1 (4)

How does this change if instead we define M to be the ratio of the median and the minimum? Recall that
the CDF is 1 − F(x) = (x/x)−α, and the median xmed corresponds to 1 − F(xmed) = 1/2. In this case, if we
write M ≡ xmed/x, we have

1
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So from either the ratio of mean to minimum or the ratio of median to minimum, we can extract the tail
parameter α using (4) or (5).

As a side note: if one wants to derive the fact we used above that the mean of a Pareto is α
α−1 x, can just

integrate x times the density f (x) = αx−α−1xα:

∫ ∞
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Of course, you are free to just remember and cite this fact!

Problem 3: Pareto and taxation

Each income millionaire has exactly $1 million that is not subject to the tax (the first $1 million that they
earn), and all income beyond that is subject to the tax.

The average amount of income subject to the tax among millionaires is then the average income of
millionaires, minus $1 million. The former is α

α−1 times $1 million, where α is the Pareto shape coefficient,
so the difference is 1

α−1 times $1 million. As a frction of all income among millionaires, which has an average
of α

α−1 times $1 million, this is just 1
α .

So: we conclude that 1
α of millionaires’ income will be subject to the tax. (Empirically, we found an

income α of around 1.64, so this would be 1/1.64 ≈ 61%, which is quite a bit, but far less than 100%, which
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is what people might naively assume!)

Problem 4: model of age-dependent wealth distribution

Population dynamics. Let nt,s be the density of people who were born at date s who are still alive at date
t, and let Nt ≡

∫ t
−∞ nt,sds be the total measure of people alive at date t. Our assumption is that nt,t = ϕNt,

i.e. that the flow rate of births equals ϕ times the total population.
We also assumed that there is a constant flow probability η of dying, so that the probability of survival

for someone born u periods ago is e−ηu. Combined with the above, we have that

nt,s = ϕe−η(t−s)Ns (6)

Further, the constant rate η of dying implies that the flow rate of deaths in the population is ηNt. Combining
with the gain in population from births ϕNt, the rate of change in the population is given by the simple ODE

Ṅt = (ϕ − η)Nt

implying that
Nt = e(ϕ−η)tN0 (7)

for any t. Combining this with (6) we have the evolution of cohort sizes in the population.

Assets of each cohort. Now, let us denote the assets held at date t by someone who was born at date s by
at,s. By assumption, there is a constant rate rat,s of earnings on wealth, minus consumption cat,s, so that we
have an ODE in t

ȧt,s = (r − c)at,s

and combined with the assumption that as,s = 1, i.e. everyone is born with 1 dollar, we have

at,s = e(r−c)(t−s)

Distribution of assets. Summarizing what we have so far: at any moment t, we have cohorts s ∈ (−∞, t]
of size nt,s = ϕe−η(t−s)Ns = ϕe−η(t−s)e(ϕ−η)sN0, each with assets at,s = e(r−c)(t−s). Assuming that r > c,
assets have a minimum of 1 and are increasing in age t − s.

Holding t constant and looking across s ∈ (−∞, t], the size of cohorts is proportional to eϕs, or equiv-
alently proportional to e−ϕ(t−s). In other words, the population is distributed exponentially by age with
parameter ϕ. Letting F(t − s) be the fraction of people with age less than t − s, it follows that F(t − s) =

1 − e−ϕ(t−s).
Now let G(a) be the CDF of the asset distribution. G(a) is the fraction of people with assets less than a,

which is equal to F(t − s) for whatever age t − s has assets a = e(r−c)(t−s), which is t − s = log a
r−c . Hence

G(a) = F
(

log a
r − c

)
= 1 − e−ϕ

log a
r−c = 1 − a−

ϕ
r−c (8)

We conclude that the asset distribution here is Pareto with shape parameter ϕ
r−c .
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The shape parameter decreases—and therefore the Pareto tail becomes fatter and wealth inequality is
higher—when the return net of consumption r − c is larger, because then the older, larger fortunes grow
more relative to the younger ones.

The shape parameter increases—and therefore the Pareto tail becomes thinner and wealth inequality is
lower—when the birth rate ϕ is larger. Intuitively, this is because older cohorts, which in this model hold
more wealth, become relatively smaller with a higher birth rate.

Why does only the birth rate ϕ show up here, and not the death rate η? I was a bit puzzled by this at
first. The reason, as we can see in the derivation above, is that the distribution of the population by age is
exponential with rate ϕ, and does not depend on η. An intuition for this, in turn, is that ϕ = (ϕ − η) + η,
i.e. that is the sum of the growth rate of the population ϕ − η and the death rate η. The size of older
generations, relative to newborn ones, shrinks for two reasons: (1) the overall population is growing at rate
ϕ − η, making those older generations smaller by comparison even if they don’t die, and (2) they die at rate
η.3 Adding these two forces together, η drops out and we get ϕ.

Finally, we’ve seen that the asset distribution is Pareto as long as r > c. If r = c, then the distribution
is degenerate, with everyone having a = 1. If r < c, then assets shrink with age, and no longer follow a
Pareto distribution. Instead, in this case, we can go through the same steps above to show that the inverse
of assets a−1 follows a Pareto distribution with shape parameter ϕ

c−r . But this is very different from a itself
being Pareto distributed!

To conclude: in this model, the condition for the asset distribution being Pareto is r > c, and in that case
the shape parameter is ϕ

r−c .

Problem 5: hybrid Bewley/Aiyagari model

Assume that we have made assumptions (CRRA preferences, zero borrowing limit) such that the ratio of
aggregate assets to labor income, A/wL, is given by some function a(r) that depends only on the real
interest rate. (I should have specified this in the question.)

Further, assuming Cobb-Douglas production Y = KαL1−α, we have a constant labor share wL/Y =

1− α, so that A/Y = (A/wL) · (wL/Y) = (1− α)a(r). We also have a constant capital share (r+ δ)K/Y = α,
so that K/Y = α/(r + δ).

Writing asset market clearing
A = K + B

and dividing both sides by Y, we get

A
Y

=
K
Y
+

B
Y

(1 − α)a(r) =
α

r + δ
+ b (9)

where b is the assumed target for B/Y. (9) can be solved to obtain equilibrium r.

3Of course, a constant death rate is extremely stylized relative to a realistic lifecycle model!
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Taking logs of (9) and totally differentiating with respect to r and log b, we obtain

d log a(r) = d log
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α

r + δ
+ b
)

ϵd
r dr =

K
A

· d log
(

α

r + δ

)
+

B
A

· d log b

ϵd
r dr = −K

A
dr

r + δ
+

B
A

d log b(
ϵd

r +
K
A

1
r + δ

)
dr =

B
A

d log b

dr =
(

ϵd
r +

K
A

1
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)−1 B
A

d log b (10)

where as in class, ϵd
r ≡ ∂ log a/∂r. We see that a log increase in the debt-to-GDP target b has an effect on real

interest rates that is proportional to the share of debt in assets (naturally enough), divided by the sum of the
asset demand semielasticity ϵd

r and the asset supply semielasticity, which in this case is the semielasticity of
capital 1

r+δ times capital’s share in assets.
A larger share of bonds in assets B

A therefore implies a larger change dr for two reasons: both the simple
fact that B

A log b is larger, and the more subtle point that since K
A = 1− B

A , a higher B
A implies a smaller asset

supply response because there is less capital to respond.
The change in log capital-output ratio is then

d log
(

α

r + δ

)
= − dr

r + δ

Problem 6: simple process for income and consumption

The assumptions stated imply that
dCt = 0.5 · dYt + 0.5 · dYt−1

If dYt is iid with standard deviation σ (and assuming mean 0), then we have

Var(dCt) = E[dC2
t ] = E[(0.5 · dYt + 0.5 · dYt−1)

2]

= 0.25 · E[dY2
t ] + 0.5 · E[dYdYt−1] + 0.25 · E[dY2

t−1]

= 0.5σ2

since the cross term is 0 because of the iid assumption: E[dYdYt−1] = 0. We also have

Cov(dCt, dCt−1) = E[dCtdCt−1]

= E[(0.5 · dYt + 0.5 · dYt−1)(0.5 · dYt−1 + 0.5 · dYt−2)]

= 0.25 · E[dYtdYt−1] + 0.25 · E[dYt−1dYt−2] + 0.25 · E[dYtdYt−2] + 0.25 · E[dY2
t−1]

= 0.25σ2

where all terms drop out except 0.25 · E[dY2
t−1].
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We conclude that the autocorrelation4 of consumption in successive periods is

Corr(dCt, dCt−1) =
Cov(dCt, dCt−1)

Var(dCt)
=

0.25σ2

0.5σ2 =
1
2

Problem 7: two-agent New Keynesian model with different taxes

(There was a typo where this was written “two-asset” rather than “two-agent” in the question.)
Recall that we had MTA ≡ µI+(1− µ)MRA in the two-agent model. But now, if all taxes are assessed on

the “saver”, then the matrix MRA will govern consumption out of taxes, and the intertemporal Keynesian
cross is actually

dY = dG − MRAdT + MTAdY

Now, expanding MTA and rearranging, this becomes

dY = dG − MRAdT + (1 − µ)MRAdY + µdY

(1 − µ)dY = dG − MRAdT + (1 − µ)MRAdY

dY =
1

1 − µ
(dG − MRAdT) + MRAdY

This is the same as the usual intertemporal Keynesian cross for the representative agent dY = dG −
MRAdT + MRAdY, just with larger shocks 1

1−µ dG and 1
1−µ dT to spending and taxes, respectively.

The solution is therefore just the solution we have already identified for the representative-agent case
given this larger shock, i.e.

dY =
1

1 − µ
dG (11)

This is in contrast to the basic “two-agent” model that we derived in class where the solution was instead
dY = 1

1−µ dG − µ
1−µ dT. The key difference is that taxes do not appear here in (11), because they are no

longer being assessed on any hand-to-mouth households.
An interesting feature of (11) is that it no longer has a balanced-budget multiplier of 1, since even if dG =

dT we still have a multiplier of 1
1−µ on government spending! This is an interesting case of the balanced-

budget multiplier result breaking when the incidence of income and taxes is different. In particular, here,
income goes partly to the high-MPC hand-to-mouth households, but taxes are not assessed on those same
households; the overall effect is for increases in spending and taxes to be more expansionary.

4Normally the correlation of two variables is defined as their covariance divided by the product of their standard deviations, but
given stationarity here, the standard deviations are the same and their product is just the variance of dCt.
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