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Abstract

We propose a general and highly efficient method for solving and estimating gen-
eral equilibrium heterogeneous-agent models with aggregate shocks in discrete time.
Our approach relies on the rapid computation and composition of sequence-space Ja-
cobians—the derivatives of perfect-foresight equilibrium mappings between aggregate
sequences around the steady state. We provide a fast algorithm for computing Jaco-
bians for heterogeneous agents, a technique to substantially reduce dimensionality, a
rapid procedure for likelihood-based estimation, a determinacy condition for the se-
quence space, and a method to solve nonlinear perfect-foresight transitions. We apply
our methods to three canonical heterogeneous-agent models: a neoclassical model, a
New Keynesian model with one asset, and a New Keynesian model with two assets.
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1 Introduction

A rapidly expanding literature at the frontier of macroeconomics incorporates rich heterogeneity
into dynamic general equilibrium models. A central challenge in this literature is that equilibrium
involves the time-varying, high-dimensional distribution of agents over their state variables.

In this paper, we propose a general, systematic, and highly efficient method to deal with this
challenge. The core idea is to perturb the model to first order in aggregates, exploit certainty equiv-
alence, and write equilibrium as a linear system in the space of perfect-foresight sequences—the
sequence space. This builds on important work by Reiter (2002, 2009), who reduces equilibrium to
a system of linear equations in the state space, and by Boppart, Krusell and Mitman (2018), who
iteratively solve for the same equilibrium in the sequence space.

Because we bypass iterations and work directly with a small linear system, our approach
makes it feasible to solve and estimate even very high-dimensional models. We demonstrate its
power by solving and estimating three models, with increasing degrees of complexity, at unpar-
alleled speed. A code repository accompanies this paper and provides general-purpose routines
that automate many of the new algorithms we introduce.1

The central objects in our method are sequence-space Jacobians: the derivatives of equilibrium
mappings between aggregate sequences around the steady state. These Jacobians summarize ev-
ery aspect of the model that is relevant for general equilibrium. To understand why our approach
is able to deal with arbitrary amounts of heterogeneity, consider a model in which households
face income uncertainty and incomplete markets. Any such model features a Jacobian J C,r that
maps, to first order, changes in the sequence of real interest rates {rt} to changes in the sequence
of aggregate consumption {Ct}. Under the hood, this mapping includes the heterogeneous re-
sponses of households to changes in r, as well as the evolution over time of the distribution of
agents that follows from this change in r. But to know the aggregate effects of r on C, all we need
to know is J C,r: it is a sufficient statistic. Our method exploits this property. We compute all rele-
vant sequence-space Jacobians, and then compose and invert these Jacobians to obtain the model’s
full set of impulse responses to shocks, perform likelihood-based estimation, test for equilibrium
determinacy, and solve for nonlinear perfect-foresight transitions very rapidly.

We make a series of five specific methodological contributions that operationalize the use of
sequence-space Jacobians for solving and estimating a large class of heterogeneous-agent models.

First, we show how to compute Jacobians for the aggregate behavior of heterogeneous agents,
such as the Jacobian J C,r described above. We offer a straightforward direct method to compute
Jacobians truncated to a horizon of T× T. We then introduce a new “fake news” algorithm, which
lowers the time it takes to compute these Jacobians by a factor of about T relative to this direct
method. This provides a dramatic speed improvement, since T is typically at least equal to 100 in
practice, and often as large as 1000.

Second, we introduce a method to reduce the dimensionality of the system used to solve for

1See https://github.com/shade-econ/sequence-jacobian, which we are continuing to update.
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equilibrium. We start by characterizing equilibrium as a solution to a certain nonlinear system

H (U, Z) = 0 (1)

where U represents the time path U0, U1, . . . of nu unknown aggregate sequences (usually ag-
gregate prices and quantities) and Z represents the time path Z0, Z1, . . . of nz exogenous shocks.
With a truncation horizon of T, the linearized version of (1) is a system of nuT equations in nuT
unknowns, which for models with many aggregate series can be large enough to become a bot-
tleneck. To reduce nu, we represent equilibrium computation as a directed acyclic graph (DAG),
where each node represents a “block” with an easy-to-compute Jacobian, and we show how to
efficiently compose Jacobians along this DAG. We also make the composition of blocks very effi-
cient by exploiting sparsity. This allows us to compute the impulse response of any endogenous
variable to any transitory shock dZ0, dZ1, . . . in a matter of milliseconds.

Third, we propose a method for rapid likelihood-based estimation.2 As pointed out by Bop-
part, Krusell and Mitman (2018), the impulse response we solve for is equivalent to the MA (∞)

representation of the model with aggregate shocks. We can therefore obtain autocovariances di-
rectly from impulse responses, and the likelihood function directly from autocovariances. We
show how precomputing Jacobians makes estimating shock processes a matter of a few seconds,
and estimating parameters a matter of a few minutes, even for the most complex model we con-
sider.

Fourth, we introduce a novel local determinacy criterion for the sequence space, analogous
to the Blanchard and Kahn (1980) condition for models of the form (1). We first we prove that
the Jacobians HU and HZ of H have a special asymptotically time-invariant structure, such that all
their far-out columns look alike. Our criterion involves a simple “winding number” condition
on any far-out column of HU, substantially generalizing results by Onatski (2006) to the case of
heterogeneous-agent models. This criterion can be evaluated almost instantly once HU is known.

Finally, we propose a Newton-based method to solve equation (1) nonlinearly very rapidly.
This nonlinear solution is relevant for the literature exploring size dependence and sign asym-
metries in models with perfect foresight (see e.g. Kaplan and Violante 2018 for fiscal policy and
Berger, Guerrieri, Lorenzoni and Vavra 2018 for house price changes), or to test for the accuracy of
the linearization with respect to aggregates (Boppart, Krusell and Mitman 2018). We show how,
with knowledge of sequence-space Jacobians, we can reliably converge to the nonlinear solution
in just a few iterations.

Our methods apply to a large class of models, which we call SHADE models, for “Sequence-
space Heterogeneous-Agent Dynamic Equilibrium”. These models include most heterogeneous-
agent neoclassical and New Keynesian models, most models of firm life cycles (Hopenhayn 1992,
Hopenhayn and Rogerson 1993), lumpy investment models as in Khan and Thomas (2008), pric-

2Here we refer to estimation as the process of finding the posterior mode and computing standard errors using the
Laplace approximation. We leave the exploration of the full posterior distribution using Markov-Chain Monte Carlo
methods to future work.
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Table 1: Summary of computing times.

Computing times for: Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK

Heterogeneous-agent Jacobians 0.10 s 8.4 s 0.65 s 5.7 s

One impulse response 0.0012 s 0.0012 s 0.017 s 0.120 s

All impulse responses (G) 0.0068 s 0.0068 s 0.097 s 0.400 s

Bayesian estimation (shocks)
single likelihood evaluation 0.00088 s 0.00088 s 0.0021 s 0.058 s
entire estimation 0.12 s 0.12 s 0.50 s 21 s

Bayesian estimation (shocks + model)
single likelihood evaluation — — 0.011 s 0.18 s
entire estimation — — 16 s 570 s

Determinacy test 252 µs 252 µs 631 µs 631 µs

Nonlinear impulse responses 0.18 s 13.76 s 0.96 s 27 s

No. of idiosyncratic states 3,500 250,000 3,500 10,500
Time horizon (T) 300 300 300 300
No. of shock parameters in estimation 3 3 6 14
No. of model parameters in estimation 0 0 3 5

Notes. Our Krusell-Smith model and its “high-dimensional” (HD) version are described in Section 2 and Appendix A.1. Our one-asset
HANK model is described in Appendix A.2. Our two-asset HANK model is described in Appendix A.3. Bayesian estimation refers
to finding the posterior mode and computing standard errors using the Laplace approximation. All calculations were performed on a
2017 MacBook Pro laptop with a 2.8 GHz processor and four cores.

ing models as in Golosov and Lucas (2007), or overlapping generation models as in Conesa and
Krueger (1999). To illustrate the breadth of our methods, we apply them to three canonical
heterogeneous-household models of increasing complexity: a neoclassical model in the spirit of
Krusell and Smith (1998), a one-asset New Keynesian model in the spirit of McKay, Nakamura and
Steinsson (2016), and a two-asset New Keynesian model in the spirit of Kaplan, Moll and Violante
(2018).

Table 1 illustrates the speeds that our algorithms are able to achieve on a laptop computer.3

For each of our main models (including a high-dimensional version of the Krusell-Smith model), it
takes less than 8 seconds to compute the Jacobians HU and HZ. Once these Jacobians are known, it
is immediate to test for determinacy and calculate impulse responses. Posterior-mode estimation
takes less than 10 minutes for every model, and is, for simpler models, a matter of seconds or
milliseconds. By contrast, the leading computational techniques existing today find it challenging
to estimate a two-asset HANK model at all.

Related literature. Since the early breakthroughs of Krusell and Smith (1998) and den Haan
(1997), the literature on solution methods for heterogeneous-agent models has grown tremen-
dously. Part of the literature has developed nonlinear methods, which are well-suited to address

3All computations were performed on a 2017 MacBook Pro laptop with a 2.8 GHz processor and four cores.

4



questions that inherently involve higher-order aggregate moments, such as risk premia or the
effects of volatility shocks.4 Our paper follows another class of methods, which linearize with re-
spect to aggregates but preserve nonlinearities with respect to idiosyncratic shocks. These meth-
ods are growing in popularity, since they are typically able to accommodate more complex mod-
els while retaining the rich interactions between the distribution of agents and macroeconomic
outcomes that are the hallmark of the recent heterogeneous-agent literature (see, for example,
Krueger, Mitman and Perri 2016 and Kaplan and Violante 2018).

As discussed at the top of the paper, we specifically leverage the main strengths of two leading
linearization approaches in the literature.

The first approach we build on has become known as the “Reiter method”, following the influ-
ential contributions of Reiter (2002, 2009).5 This method incorporates individual policy functions
and discretized distributions as part of the state space, solves the model without aggregate shocks
nonlinearly, and then linearizes the model with respect to aggregates. The resulting linear system
can then be solved and estimated using standard linear rational expectations methods. The main
limitation of this approach is that the dimension of the linear system grows with the dimension
of the state space of the heterogeneous-agent model. For many complex applications, standard
rational expectations solution methods become too costly. To address this challenge, the literature
has developed model reduction techniques (see Reiter 2010, Ahn et al. 2018, Winberry 2018, Bayer
and Luetticke 2018). These bring down the dimension of the linear system, but their effectiveness
depends on the nature of the heterogeneity, and the resulting size can remain prohibitive.6

The second approach we build on, which we will refer to as the “BKM method”, follows the
lead of Boppart, Krusell and Mitman (2018) and solves for perfect-foresight impulse responses to
small unanticipated aggregate shocks, starting from the steady state with no aggregate risk (“MIT
shocks”).7 The key insight of Boppart, Krusell and Mitman (2018) is that this method solves for
the same local impulse response as the Reiter method: once a model is linearized to first order in
aggregates, it features aggregate certainty equivalence, and the impulse responses to MIT shocks
are the same as those of the full stochastic model (Simon 1956, Theil 1957). In practice, to obtain
these impulses, the BKM method then follows the standard nonlinear approach in the literature:
write aggregate equilibrium conditions as functions of certain unknown aggregate sequences, and
then iterate over guesses for these sequences until convergence. This approach is intuitive and
bypasses the need for a large state-space system. Its major limitation is that it often requires a

4See the survey by Algan, Allais, Den Haan and Rendahl (2014) and recent work by Brumm and Scheidegger (2017),
Mertens and Judd (2018), Proehl (2019), and Fernández-Villaverde, Nuño and Hurtado (2019), among many others.

5This is the method used in McKay and Reis (2016), Winberry (2018), Bayer, Luetticke, Pham-Dao and Tjaden (2019),
Mongey and Williams (2017), Ahn, Kaplan, Moll, Winberry and Wolf (2018), and Plagborg-Møller and Liu (2019),
among many others.

6For example, absent model reduction, the two asset model of Ahn et al. (2018) requires solving a linear rational
expectations system of 120,000 in 120,000 variables. With model reduction, they are able to cut this size to a 2,445 by
2,445 system, but cannot lower the dimension further without altering the shape of their impulse responses.

7The nonlinear MIT shock method dates back to Auerbach and Kotlikoff (1987) for OLG models and to Conesa and
Krueger (1999) for models with idiosyncratic risk. It was recently used by Guerrieri and Lorenzoni (2017), McKay et al.
(2016) and Kaplan et al. (2018), among many others.
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large number of iterations, making it too slow for advanced applications such as estimation—and
convergence is not even guaranteed in general.

Our paper synthesizes these two approaches. As in Reiter (2009), we perturb the model to
first order in aggregates and write equilibrium as a linear system, so that solving for equilibrium
becomes a simple matter of linear algebra, bypassing the need for any iteration. But this linear
system is in the sequence space, like BKM, rather than the state space, and it characterizes the first-
order impulse response to unexpected shocks around the steady state. And as in the BKM method,
the size of the system only scales with the macro complexity of the model (the number of aggre-
gate variables), not with the micro complexity (the number of idiosyncratic states, the presence of
occasionally binding borrowing constraints, and so on).8

The contributions of this paper relate to four other branches of the existing literature.
First, there is a growing literature on sufficient statistics for general equilibrium (Auclert and

Rognlie 2018, Auclert, Rognlie and Straub 2018, Guren, McKay, Nakamura and Steinsson 2018,
Koby and Wolf 2018, Wolf 2019). But, while this literature uses sufficient statistics as an empirical
strategy to connect models to the data, or as a conceptual strategy to shed light on equilibrium
adjustment mechanisms, in this paper we use them as a computational strategy to solve a large
class of models very efficiently.

Second, the idea of using sequence-space Jacobians to solve for perfect-foresight equilibria
relates to a literature that uses Newton-based methods to solve for nonlinear perfect-foresight
transition paths in representative agent models (see Laffargue 1990, Boucekkine 1995, and Juil-
lard 1996). A version of this approach is currently implemented in Dynare. The algorithms in
this literature exploit the sparsity of representative-agent sequence-space Jacobians to accelerate
the computation of matrix inverses. As we show, the heterogeneous-agent component implies
that SHADE model Jacobians are never entirely sparse. This requires us to develop alternative
methods.

Third, our methods for reducing dimensionality have two precedents. The idea of breaking
down equilibrium computation into a series of small blocks formalizes a common procedure from
the literature solving MIT shocks.9 The idea of representing the flow of computation as a directed
acyclic graph (DAG), and of accumulating Jacobians along this DAG, relates to what is known as
the “forward mode” in the automatic differentiation literature (see Griewank and Walther 2008).
While automatic differentiation has been used in the heterogeneous-agent literature for models
in state-space form (e.g. Ahn et al. 2018, Childers 2018), to the best of our knowledge, we are
the first to apply this idea to compute Jacobians in sequence space, for which it is particularly
well-suited.10

8We share with all aggregate linearization methods the drawback that the model does not generate risk premia,
portfolio choice is indeterminate, and optimal Ramsey policy is ill-defined. For these applications, higher-order pertur-
bations or global solution methods are more appropriate (see for example Fernández-Villaverde, Rubio-Ramírez and
Schorfheide 2016.)

9It also relates to ideas developed in an older, static, computational general equilibrium literature (e.g. Mansur and
Whalley 1982, van der Laan 1985).

10Dimensionality reduction is also a key focus of the model reduction literature (e.g. Reiter 2010, Ahn et al. 2018,
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Finally, the idea of using impulse responses directly to perform model estimation relates to
an early time series literature on the estimation of MA processes (e.g. Box and Jenkins 1970,
Hamilton 1994). The vast majority of the DSGE literature uses the Kalman filter to estimate models
in state-space form (e.g. Herbst and Schorfheide 2015 and Fernández-Villaverde et al. 2016). Our
approach instead relates to the small DSGE literature that estimates models using their MA (∞)

representation (Mankiw and Reis 2007, Schmitt-Grohé and Uribe 2010, Meyer-Gohde 2010, Lan
and Meyer-Gohde 2013). To the best of our knowledge, we are the first to apply these ideas to the
estimation of heterogeneous-agent models.

Layout. The rest of the paper proceeds as follows. Section 2 introduces our computational
method with an example. Section 3 provides our new algorithm for computing heterogeneous-
agent Jacobians. Section 4 shows how to combine these Jacobians to compute impulse responses
in SHADE models, and introduces our DAG-based dimension reduction method. Section 5 shows
how to use these impulse responses to perform fast likelihood-based estimation, and estimates
our three example economies with US data. Section 6 provides our new determinacy criterion for
the sequence space. Section 7 shows how to use sequence-space Jacobians to compute nonlinear
perfect-foresight transition paths. Section 8 concludes.

2 The sequence-space Jacobian: an example

We introduce our methods by means of an example: Krusell and Smith (1998)’s celebrated exten-
sion of the real business cycle model to heterogeneous households. This model is a natural starting
point, since it well-known and there exist many well-established algorithms for solving it.

We set up the model in the sequence space, that is, assuming perfect foresight with respect
to aggregates. We then show how to use the sequence-space Jacobian to solve for the impulse
response of the model to a total factor productivity (TFP) shock in a fraction of a second.

2.1 Model description

The economy is populated by a mass 1 of heterogeneous households that maximize the time-
separable utility function E

[
∑ βtu (ct)

]
, where u has the standard constant relative risk aversion

form, u (c) = c1−σ

1−σ . There exist ne idiosyncratic states, and in any period t, agents transition be-
tween any two such states e and e′ with exogenous probability P (e, e′). We denote by π the sta-
tionary distribution of P and assume that the mass of agents in each state e is always equal to
π (e).11 Agents supply an exogenous number of hours l, and earn wage income wtel, where wt is

Winberry 2018, Bayer and Luetticke 2018). These methods reduce dimension in the state space by approximating
distributions with lower-dimensional objects. By contrast, we make no approximation to the distribution when solving
for equilibrium. Our main source of approximation error comes from truncation at finite T. We evaluate the inaccuracies
these create in section 4.4.

11In the original Krusell and Smith (1998) model, the transition probabilities depend on the aggregate state, that is,
P (e, e′, Zt). Our methods can be applied to this case as well (see the general formulation in section 3.1).
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the wage per efficient hour. Agents can only trade in capital k, which pays a rental rate rt net of
depreciation, and are subject to a no-borrowing constraint. The value function of an agent in state
(e, k−) at time t is therefore

Vt (e, k−) = maxc,k u (c) + β ∑
e′

Vt+1
(
e′, k
)

P
(
e, e′
)

s.t. c + k = (1 + rt) k− + wtel (2)

k ≥ 0

Denote by c∗t (e, k−) and k∗t (e, k−) the policy functions that solve the Bellman equation (2). Also
denote by Dt (e, K−) ≡ Pr (et = e, kt−1 ∈ K−) the measure of households in state e that own capital
in a set K− at the start of date t. The distribution Dt has law of motion

Dt+1
(
e′, K

)
= ∑

e
Dt

(
e′, k∗−1

t (e, K)
)

P
(
e, e′
)

(3)

where k∗−1
t (e, ·) denotes the inverse of k∗t (e, ·). We assume that prior to t = 0, the economy is in

a steady state with constant wage wss and net rental rate rss, corresponding to a steady state of
the general equilibrium economy discussed momentarily.12 In this steady state, there is a unique
value function and decision rule solving (2), and then a unique stationary distribution Dss solving
(3). We suppose that agents start in this stationary distribution at date 0, so that D0 = Dss.

Equation (2) shows that, for any t, the policy k∗t (e, k−) is a function of the future path {rs, ws}s≥t.
Given D0 = Dss, through (3), the distribution Dt (e, K) at any t is a function of the entire path
{rs, ws}s≥0.13 It follows that aggregate household capital holdings are characterized by a capital
function Kt

(
{rs, ws}s≥0

)
, where

Kt ({rs, ws}) = ∑
e

∫
k−

k∗t (e, k−) Dt (e, dk−) (4)

The ability to reduce interactions between heterogeneous agents to functions such as Kt, which
maps aggregate sequences into aggregate sequences, is key to the sequence-space Jacobian method.
We now combine this Kt function with equations describing production and market-clearing con-
ditions to describe the entire Krusell-Smith economy. Production in this economy is carried out
by a competitive representative firm, which has a Cobb-Douglas technology Yt = ZtKα

t−1L1−α
t ,

rents capital and labor from workers at rates rt + δ and wt, and faces the sequence of total factor

12Achdou, Han, Lasry, Lions and Moll (2017) show that the steady state is unique when σ ≤ 1.
13This can be shown recursively: given D0 = Dss, D1 is a function of {rs, ws}s≥0, and therefore so is D2, through

its dependence on D1. In section 3 we elicit explicitly the first-order dependence of Dt, k∗t , and Kt on the sequence
{rs, ws}s≥0.
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productivity Zt. The firm’s first-order conditions

rt = αZt

(
Kt−1

Lt

)α−1

− δ (5)

wt = (1− α) Zt

(
Kt−1

Lt

)α

(6)

relate the paths of prices {rt, wt} to the exogenous paths {Zt, Lt = ∑ π (e) el} and the endogenous
path for capital {Kt}. Combining (4)–(6), we can express the capital market clearing condition at
each point in time as a function H,

Ht (K, Z) ≡ Kt

({
αZs

(
Ks−1

∑ π (e) el

)α−1

− δ, (1− α) Zs

(
Ks−1

∑ π (e) el

)α
})
− Kt = 0 (7)

where K = (K0, K1, . . .)′. Given initial capital K−1 and the exogenous path for productivity, Z =

(Z0, Z1, . . .)′, equation (7) pins down the equilibrium path of capital. Given K, it is then immediate
to obtain the value of all other endogenous variables, Yt, Lt, wt, and rt at every t.14

2.2 Impulse responses

Applying the implicit function theorem to (7), the linear impulse response of capital to a transitory
technology shock dZ = (dZ0, dZ1, . . .)′ is given by

dK = −H−1
K HZdZ (8)

where HK and HZ denote the Jacobians of H with respect to K and Z, evaluated at the steady state.
Given dK, the impulse responses of other variables, e.g. {rs, ws}, follow immediately. In practice,
(8) is solved up to a given (large) horizon T such that K and Z have approximately returned to
steady state by time T.

We can in turn use the chain rule to relate the Jacobians HK and HZ to the derivatives of the K
function defined in equation (4), all evaluated at the steady state. For example, differentiating (7)
with respect to Ks, we find that the t, s entry of HK is

[HK]t,s =
∂Kt

∂rs+1

∂rs+1

∂Ks
+

∂Kt

∂ws+1

∂ws+1

∂Ks
− 1{s=t} (9)

and a similar expression applies to HZ. In addition, the derivatives ∂rs+1
∂Ks

, ∂ws+1
∂Ks

, ∂rs+1
∂Zs

and ∂ws+1
∂Zs

at
(Kss, Zss) can all be computed analytically: for example,

∂rs+1

∂Ks
= α (α− 1) Zss

(
Kss

Lss

)α−2

14Note that we were able to drop goods market clearing, owing to Walras’s law.
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Figure 1: Impulse responses of capital to 1% TFP shocks in the “high-dimensional” Krusell-Smith model

(a) AR(1) shock with persistence ρ
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(b) News shock at time s
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Hence, to obtain H−1
K HZ in (8), all we need are the Jacobians of the K function with respect to

its two inputs r and w. Obtaining these Jacobians is perhaps the single biggest challenge in ap-
plying our methods. In section 3, we introduce two algorithms, a direct and a fake news algorithm,
to compute them. As table 1 reveals, for a standard calibration of the Krusell-Smith model de-
tailed in appendix A.1, our fake news algorithm takes 100 milliseconds to calculate Jacobians of
K, truncated to a horizon of 300 × 300. In a “high-dimensional” calibration that increases the
dimensionality of the state space from 3,500 to 250,000, it still only takes 8 seconds.

Once we have these Jacobians, the underlying heterogeneity no longer matters: the Jacobians
tell us everything that we need to know, to first order, about the household side of the model. This
feature of our method is apparent in table 1, where we see that most other computing times are
identical between the two calibrations of the Krusell-Smith model, despite the large disparity in
the size of their state spaces.

Impulse responses and news-shock interpretation. Once we have the Jacobians of K, we can
immediately calculate −H−1

K HZ. Given (8), applying this matrix to any path for dZ gives us the
impulse response dK of capital with just a single matrix-vector multiplication, which is almost
instantaneous. Panel (a) of figure 1 does this for a variety of dZ, representing 1% AR(1) shocks to
TFP with different persistences ρ in our high-dimensional Krusell-Smith model.

It is even more immediate to obtain the effect of the “news” at date 0 that TFP will be higher
by 1% at time s, as in panel (b) of figure 1. By definition, the impulse responses to s-period ahead
news are equal to the sth column of the matrix −H−1

K HZ. This “news shock” interpretation of the
columns provides a useful way of understanding their role in the computation of generic impulse
responses. For example, the impulse responses to AR(1) TFP paths of persistence ρ in panel (a)
can be reinterpreted as the effect of the simultaneous news, at date 0, of an increase of ρs in TFP at
times s = 0, 1, . . .
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3 Computing Jacobians for heterogeneous-agent blocks

In the previous section we established the usefulness of knowing the Jacobians ∂K/∂r and ∂K/∂w
for computing the impulse responses of the Krusell-Smith model. The spirit of equation (9) should
make clear that the advantages of Jacobians extend well beyond this specific example. Indeed, in
section 4 we will show that, in a large class of models, the Jacobians of the H function can be
related, via the chain rule, to derivatives of one or more heterogeneous-agent outputs with respect
to one or more heterogeneous-agent inputs.

These derivatives generalize the concept of the K function Jacobians. In the general case,
outputs can describe aggregate savings, consumption, investment, or other decisions by hetero-
geneous households or firms, while inputs are the aggregates relevant to the decision-making of
individual agents, such as interest rates or wages. We now describe two algorithms for computing
the Jacobians of outputs o with respect to inputs i, which we denote generically by J o,i.

3.1 Heterogeneous-agent blocks

We first formally introduce the functions whose Jacobians we would like to solve for. We refer to
these functions as heterogeneous-agent blocks. In section 4, we will combine these blocks with other
“simple” blocks to form general equilibrium models.

Definition 1. A heterogeneous-agent block maps sequences Xi, for i = 1, . . . , nx, which we call inputs,
to sequences Yo, for o = 1, . . . , ny, which we call aggregate outcomes or outputs. Stacking the Xis into
a vector X, and the Yos into a vector Y, we represent this map with the function

Y = h(X) (10)

whose time-t output must take the form

Yt = ∑
e∈E

∫
k∈K

y (e, k−; Vt+1, Xt) Dt (e, dk−) (11)

for a given individual outcome function y : E ×K × RE×K × Rnx → Rny . In (11), Dt denotes a
measure of agents over a set of exogenous and endogenous idiosyncratic states (e, k−) ∈ E ×K,
associated with a dynamic programming problem

Vt (e, k−) = max
k∈Γ(e,k−,Xt)

u (e, k−, k, Xt) + β ∑
e′∈E

Vt+1
(
e′, k
)

P
(
e, e′, X t

)
(12)

and whose law of motion is described, for any e′ ∈ E and K ⊆ K, by15

Dt+1(e′, K) = ∑
e∈E

Dt(e, k∗−1
t (e, K))P

(
e, e′, Xt

)
(13)

15Throughout, we assume that P(e, e′, xt) is a stochastic transition matrix for every xt; K is a measurable space and
K ⊆ K refers to a measurable set K.
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where k∗−1
t (e, K) ≡ {k−|k∗t (e, k−) ∈ K} and k∗t (e, k−) denotes a maximizer of (12).

The aggregate savings function Kt ({rs, ws}) of the Krusell-Smith model fits the scope of defi-
nition 1. Indeed, given agents’ continuation utility Vt+1 and the pair Xt = (rt, wt), one can obtain
the savings policy function as a solution to the Bellman equation (2), and therefore write our indi-
vidual outcome function of interest as y (e, k−; Vt+1, Xt) ≡ k∗t (e, k−). Moreover, equation (2) clearly
fits the general class of Bellman equations in (12), and the laws of motion for the distributions, (3)
and (13), are identical.

The formulation in definition 1 is more general, however, in that it can accommodate mul-
tidimensional choices, as in heterogeneous-household problems with endogenous labor supply
(see appendix A.2); multidimensional endogenous state variables, as in heterogeneous-household
problems with two assets (appendix A.3); models with fixed costs, as in heterogeneous-firm prob-
lems with investment frictions (e.g. Khan and Thomas 2008), or menu costs in price-setting (e.g.
Golosov and Lucas 2007); as well as models with search and matching where aggregate employ-
ment prospects affect the job finding and job destruction rate (e.g. Gornemann, Kuester and Naka-
jima 2016).16 The main limitation is that (12) cannot depend on the full distribution directly, such
as in OLG models with an endogenous distribution of bequests that are received in mid-life (e.g.
De Nardi 2004, Straub 2017), or models of wage posting with on-the-job search a la Burdett and
Mortensen (1998).

To evaluate heterogeneous-agent blocks h(X) in practice, it is necessary to discretize the prob-
lem. There are many ways to do this. Any discretization routine uses a parameterization of the
distribution Dt and a finite-dimensional forward-looking variable vt. We assume that Dt repre-
sents the distribution mass at each one of ng gridpoints (the “histogram” of the distribution). For
concreteness, in our baseline case we also let vt be the value function Vt at each point on the same
grid. However, we note that it is often more efficient computationally to include in the vector vt

information about derivatives of the value function in addition to, or instead of, the level of Vt,
and our algorithm below applies to such formulations as well.17 A discretization of (12), (13) and
(11) results in the following system of equations:

vt = v(vt+1, Xt) (14)

Dt+1 = Λ(vt+1, Xt)
′Dt (15)

Yt = y(vt+1, Xt)
′Dt (16)

where vt and Dt are ng × 1 vectors representing the value function and distribution at each grid-

16Equations (12) and (13) do not allow forward-looking choices to affect P(e, e′, Xt) directly (e.g. endogenous search
effort), but this is for notational simplicity and would pose no difficulty for our algorithm.

17In particular, as implemented in our online code, our preferred solution methods for one-asset models combine
Carroll (2006)’s endogenous grid method for policy function iteration with Young (2010)’s non-stochastic simulation
method to translate optimal policies in between gridpoints to transition probabilities on the grid. In this case, vt is
the marginal value function V′ (kt) at each point on the grid. Similarly, when applying our two-asset model algorithm
from appendix B.1, vt includes the marginal values with respect to both the liquid and illiquid assets at each point on
the grid.
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point, Xt is an nx × 1 vector of inputs, Yt is an ny × 1 vector of aggregate outcomes, Λ(vt+1, Xt)

is an ng × ng transition matrix that discretizes the law of motion (13), and y(vt+1, Xt) is a ng × ny

matrix representing, for each aggregate outcome, the value of the individual outcome function y
in equation (11) at each point on the grid.

Starting from (14)–(16), we can use a standard approach to obtain the steady-state (vss, Dss, yss, Yss)

given steady-state inputs Xss. First, iterate (14) backward from some initial guess for vss until ap-
proximate convergence to (vss, yss). With the interpretation of vt as the value function at each
gridpoint, this procedure is just value function iteration on a discretized version of (12). Second,
iterate (15) forward from some initial guess for Dss, by repeatedly applying the transition matrix
Λ(vss, Xss), until approximate convergence to Dss. Third, apply (16) to obtain Yss.

In general, to solve (14)–(16) for sequences {vt, Dt, yt, Yt} given an arbitrary time-varying se-
quence {Xt} of inputs, it is necessary to truncate at some time T. Suppose that Xt = Xss for all
t ≥ T, and that we are interested in obtaining the first T entries in the sequence {Yt} = h({Xt}).
We can then apply a standard algorithm that parallels the steady-state computation. First, iterate
(14) backward, starting with vT = vss, and compute forward-looking variables vt as well as indi-
vidual outcomes y(vt+1, Xt) and the transition matrix Λ(vt+1, Xt) for t = T − 1, . . . , 0. We call this
process a backward iteration, consisting of T backward steps. Second, iterate (15) forward, starting
with D0 = Dss, to solve for the distributions Dt for t = 1, . . . , T − 1, by applying the transition
matrices Λ(vt+1, Xt). We call this process a forward iteration, consisting of T forward steps. Finally,
for each t, take the distribution-weighted sum y(vt+1, Xt)′Dt of individual outcomes to obtain Yt

in (16).
Denote by J o,i the Jacobian of h(X) for output o and input i evaluated at steady state, so that

J o,i
t,s ≡

∂Yo
t

∂Xi
s
(Xss). We now describe two methods for computing J o,i up to a truncation horizon T.

3.2 Direct algorithm

The first way to compute the Jacobian J o,i is by directly applying a finite-difference method. For
each s, define the sequence es to have 0’s everywhere except the sth entry, where there is a 1. Then
we can compute

J ·,i·,s =
1

dx

[
h({Xi

ss + esdx, X−i
ss })− Yss)

]
(17)

for some small dx > 0, using the standard approach discussed above to calculate h given (14)–(16).18

This calculates the s-th column of the Jacobian J o,i for all o = 1, . . . , ny at once.
This direct algorithm provides a general way of obtaining the Jacobians of the heterogeneous-

agent block. Its advantage is that it is straightforward to implement in any model. Its drawback
is that it can sometimes be slow. For example, as table 2 reveals, computing the two Jacobians

18In practice, it is useful to correct for the fact that unless the exact steady state is found, there is a slight difference
numerically between vss and v(vss, Xss), which can be blown up by repeated iteration and dividing by dx. One sim-
ple way to implement such a correction is to subtract h(Xss) rather than Yss in (17). Even better—but slightly more
involved—is to do separate numerical differentiation of each backward step, always subtracting by v(vss, Xss) rather
than vss (and likewise for forward steps).
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J K,r and J K,w with horizon T in the benchmark version of our Krusell and Smith (1998) model
takes 26 seconds when T = 300. For the high-dimensional version, it takes more than 30 minutes.
Fundamentally, the problem is that, with nx inputs, the direct algorithm requires nxT2 backward
steps and nxT2 forward steps. If each step takes time because the heterogeneous-agent block has
many idiosyncratic states or is otherwise complex, the overall computation can be slow. This is
especially likely to be a bottleneck if one needs to compute the Jacobian multiple times for different
parameter values. This points to the need for an alternative, faster algorithm, which we introduce
next.

3.3 Fake news algorithm

The second way to compute J o,i is a new method we call the fake news algorithm.
To begin, since our objective is to compute Jacobians at the steady state, it is natural to work

directly with the equations (14)–(16) linearized around the steady state. For notational simplicity,
we start with the case of a one-dimensional input sequence X = (X0, X1, . . .) and one-dimensional
output sequence Y = (Y0, Y1, . . .). The linearized system is then:

dvt = vvdvt+1 + vxdXt (18)

dDt+1 = (Λvdvt+1 + ΛxdXt)
′Dss + Λ′ssdDt (19)

dYt = (yvdvt+1 + yxdXt)
′Dss + y′ssdDt (20)

with terminal condition dvT = 0 and initial condition dD0 = 0.19

We now turn to the fake news algorithm. We will start by formally solving the system (18)-(20)
for the Jacobian in a way that provides the foundation for rapid computation, and then proceed
to discuss implementation details.

Two contributors to aggregate Y: individual and distribution effects. We can write a condensed
version of (20) by defining dyt ≡ yvdvt+1 + yxdXt. This results in:

dYt = dy′tDss︸ ︷︷ ︸
individual

+ y′ssdDt︸ ︷︷ ︸
distribution

(21)

Equation (21) splits the change dYt in aggregate outcome into two effects. The individual effect is
from the change dyt in individual outcomes, while the distribution effect is from the change dDt in
the incoming distribution. We now study each of these effects separately, in response to a shock
dXs at time s, using (18)-(20).

Individual effect. If t = s, i.e. if the shock is in the current period, dXs affects dyt directly via yx.
If t < s, i.e. if the shock is anticipated, then dXs affects dyt indirectly via yv, through changing the

19Here, vv and yv are the ng × ng derivatives of v and y with respect to v; vx and yx are the ng × 1 derivatives of v
and y with respect to X; and Λv and Λx are the ng × ng × ng and ng × ng × 1 derivatives of Λ with respect to v and X.
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value function tomorrow by dvt+1 = (vv)s−t−1vxdXs. If t > s, i.e. if the shock is in the past, then
there is no effect on dyt. Overall, if we define the scalars

Yu ≡


0 if u < 0

y′xDss if u = 0(
yv(vv)u−1vx

)′Dss if u > 0

(22)

then the individual effect is given by

dy′tDss = Ys−tdXs (23)

Notice that this effect only depends on the distance between s and t, and not on s and t separately.

Distribution effect. The distribution effect is more complicated, since dDt is given by the recur-
sive relationship (19). We will proceed in two parts: we first derive an expression for the non-
recursive term (Λvdvt+1 + ΛxdXt)

′Dss in (19), and we then proceed recursively to characterize
the sequence {dDt}.

Start with the non-recursive term. If t = s, there is the direct effect Λ′xDssdXs. If t < s, then
the value function tomorrow changes by dvt+1 = (vv)s−t−1vxdXs, and there is the indirect effect
(Λvdvt+1)

′Dss. If t > s, there is no effect. If we define the ng × 1 vectors

Du ≡


0 if u < 0

Λ′xDss if u = 0(
Λv(vv)u−1vx

)′Dss if u > 0

(24)

then the non-recursive term is Ds−tdXs.
Now, starting with the initial condition dD0 = 0 and recursively substituting the expression

for the non-recursive term into (19), we can derive the sequence {dDt}:

dD1 = DsdXs

dD2 = (Ds−1 + Λ′ssDs)dXs

dD3 = (Ds−2 + Λ′ssDs−1 + (Λ′ss)
2Ds)dXs

· · · = · · ·
dDt = (Ds−t+1 + Λ′ssDs−t+2 + . . . + (Λ′ss)

t−1Ds)dXs (25)

If we define the 1× ng vectors P ′u as

P ′u ≡

0 if u < 0

y′ss(Λ′ss)
u if u ≥ 0

(26)
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then we can combine (25) with (26) to write the general distribution effect as

y′ssdDt =
(
P ′0Ds−t+1 + P ′1Ds−t+2 + . . . + P ′t−1Ds

)
dXs (27)

We can interpret the P ′u vectors as linear functionals, which when applied to some perturbation
dDτ to the distribution at time τ, give the effect dYτ+u on the aggregate outcome u periods later.20

In equation (27), these functionals are applied to the perturbations to dD1, . . . , dDt from anticipat-
ing the shock in periods 0, . . . , t− 1.

Combining individual and distribution effects. Substituting both (23) and (27) into (21) gives
us an expression for the Jacobian entries Jt,s:

dYt = Jt,sdXs =
(
Ys−t + P ′0Ds−t+1 + P ′1Ds−t+2 + . . . + P ′t−1Ds

)
dXs (28)

This expression only uses the three objects defined in (22)–(26): the scalars Yu, the ng × 1 vectors
Du, and the 1× ng vectors P ′u, for all u = 0, . . . , T − 1. In short, it reduces the problem of finding
T2 entries of Jt,s to the problem of finding these 3T objects.

Fake news matrix and recursion. Inspecting (28), we note that Jt−1,s−1 and Jt,s are identical,
except that the latter adds an additional term P ′t−1Ds. This motivates us to define the matrix F as:

Ft,s ≡

Ys t = 0

P ′t−1Ds t > 0
(29)

We can then use this matrix to recursively construct the Jacobian, as:

Jt,s =

Ft,s t = 0 or s = 0

Ft,s + Jt−1,s−1 otherwise
(30)

We call F the fake news matrix, since it can be interpreted as the Jacobian for “fake news” shocks.
In a fake news shock, agents learn at date 0 about some shock dXs at date s, but then learn at date
1 that dXs will never actually materialize (except in the special case s = 0, where the shock has
already occurred). A fake news shock generally has consequences for all periods after date 0, since
agents’ date-0 behavior responds to the fake news, and this alters the distribution going forward.

An appealing feature of fake news shocks is that at any given t, there is only an individual
effect or distribution effect, but never both. At date 0, as always, there is only the individual effect
Ys, since the distribution has not yet changed. From date 1 onward, no shock is expected, implying
that forward-looking variables revert to steady state and the only effect is through the distribu-

20In the literature on control theory, the matrix consisting of rows P ′0,P ′1, . . . is sometimes called the observability
matrix. This concept is also used by Reiter (2010) and Ahn et al. (2018). We avoid this terminology because observability
in a different sense—observability to the econometrician—is central to our discussion of estimation in section 5.
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tion. This effect comes from the change in date-1 distribution Ds caused by agents’ anticipatory
behavior at date 0, which then propagates and determines dYt according to P ′t−1.

As (30) shows, the fake news matrix F is all that is necessary to construct the Jacobian J . An
element Jt,s contains the response at date t to an actual date-s news shock: where agents learn at
date 0 about a shock dXs, and the shock does indeed happen at s. This is the same as the response
at date t− 1 to news shock about date s− 1, except that it is anticipated for an extra period, and
the effect of this anticipation persists through the distribution. This extra effect is exactly the effect
of a date-s fake news shock, and hence Jt,s = Ft,s + Jt−1,s−1.

Algorithm. We are now ready to describe our general algorithm. First, we generalize our nota-
tion to the case with multiple outputs o and inputs i. The Yu defined in (22) depends on both the
input shock dXi and the output of interest dYo, so we write it as Y o,i

u . In contrast, theDu defined in
(24) depends only on the input shock dXi, and the P ′u defined in (26) depends only on the output
of interest dYo, so we write them as Di

u and (P o
u)
′ respectively.

We can then obtain J with the following four steps:

1. For each input i, perform a backward iteration with T steps, starting from a small shock dXi ≡
dXi

T−1 in the final period, calculating for each u = 0, . . . , T − 1

Di
u =

Λ(vT−u, XT−u−1)
′Dss −Dss

dXi (31)

Y o,i
u =

yo(vT−u, XT−u−1)
′Dss − Yss

dXi ∀o (32)

and stacking the results in a ng × T matrix Di and a length-T vector Y o,i.

2. For each output o, perform a “transpose” forward iteration with T − 1 steps, initializing to
P o

0 = yo
ss, recursively calculating for each u = 1, . . . , T − 2

P o
u = ΛssP o

u−1 (33)

and stacking the results in an ng × (T − 1) matrix P o.

3. For each output-input pair (o, i), construct the fake news matrix F o,i, with Y o,i in row t = 0,
and the matrix product (P o)′Di in rows t = 1, . . . , T − 1.

4. For each output-input pair (o, i), apply recursion (30) to construct the Jacobian J o,i from
F o,i.

Step 1 is simply using numerical differentiation to apply (22) and (24).21 Step 2 follows directly
from (26), and we call it a “transpose” forward iteration since it has the same form as (15), except
that here we multiply by (Λ′ss)

′ = Λss rather than by Λ′ss.
21As discussed for the direct method in footnote 18, it can be useful to correct for any slight numerical difference

between vss and v(vss, Xss).
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Table 2: Direct and fake news algorithms to compute 300× 300 Jacobians.

Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK

Direct 26 s 1939 s 176 s 2107 s
step 1 (backward) 16 s 1338 s 150 s 1291 s
step 2 (forward) 10 s 601 s 27 s 815 s

Fake news 0.104 s 8.429 s 0.646 s 5.697 s
step 1 (backward) 0.067 s 5.433 s 0.525 s 5.206 s
step 2 (forward) 0.010 s 1.546 s 0.021 s 0.122 s
step 3 0.023 s 1.445 s 0.092 s 0.346 s
step 4 0.004 s 0.004 s 0.008 s 0.023 s

Gridpoints ng 3,500 250,000 3,500 10,500
Inputs nx 2 2 4 5
Outputs ny 2 2 4 4
Jacobians nx × ny 4 4 16 20

Efficiency. Table 2 displays the time it takes to compute J s for the heterogeneous-agent block
of each of our three benchmark models: the Krusell-Smith model already introduced, a one-asset
HANK model with endogenous labor described in Appendix A.2, and a two-asset HANK model
described in Appendix A.3. The speed-up from using the fake news rather than the direct algo-
rithm is very large in all cases: a factor of over 200 for Krusell-Smith and one-asset HANK, and a
factor of over 300 for two-asset HANK.

What is the source of this very large efficiency gain? As we discussed in section 3.2, when
there are nx inputs and ny outputs, the direct algorithm requires nxT2 backward steps and nxT2

forward steps. By contrast, the fake news algorithm requires nxT backward steps and ny(T − 1)
“transpose” linearized forward steps, reducing effort in steps 1 and 2 by a factor of around T,
which in our application is T = 300.22

There are two additional steps required for the fake news algorithm, steps 3 and 4. Step 3
involves the multiplication of T × ng and ng × T matrices, which has a cost proportional to ngT2

for each input-output pair—but since matrix multiplication is implemented extremely efficiently
by standard numerical libraries, this is less of a bottleneck overall than the backward iteration
in step 1, especially for models like the two-asset HANK where backward iteration is especially
complex. Step 4 is even faster, since it is a simple recursion on T × T matrices.

22The transpose forward iteration in step 2 takes far less time than the backward iteration in step 1, especially for the
more complex models, because it only requires repeatedly multiplying by Λss—which can be split into multiplication
by a small transition matrix for the exogenous state, and multiplication by a highly sparse matrix with policies for
endogenous states, both of which we implement efficiently. In principle, similar improvements could be possible in
step 1 if we used automatic rather than numerical differentiation in a way that took advantage of the sparsity of the
backward operation, but here we focus on numerical differentiation to make the method immediately applicable to a
wide variety of complex models.
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Figure 2: Jacobian J K,r and fake news matrix FK,r in the Krusell and Smith (1998) model.
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Accuracy. In practical implementations, one may wish to check that both the fake news and the
direct algorithm compute the correct Jacobian J . A simple test of this property is to compare
numerically the outcomes of both algorithms. We conduct such an accuracy check in appendix
B.2, with results in figure B.1. This check makes clear that our two algorithms compute exactly
the same Jacobians—the fake news algorithm just does so much faster. Furthermore, the code
we provide largely automates the fake news algorithm, so that it should be easy to apply for any
given model.

3.4 Structure of Jacobians

In addition to being a useful computational tool, the fake news matrix sheds light on an important
structural property of the Jacobians of heterogeneous-agent blocks, which we will now discuss.

Panel (a) of figure 2 displays several columns of the Jacobian J K,r for the Krusell-Smith model
of section 2. One striking feature is that these columns converge to a regular pattern around the
main diagonal: the s = 50 impulse response around t = 50 is almost the same as the s = 75 and
s = 100 impulse responses around t = 75 and t = 100. In other words, if the shock is anticipated
far enough in advance, all impulse responses are just shifted versions of each other.

This turns out to be a general property of Jacobians for heterogeneous-agent blocks, which we
call asymptotic time invariance and formalize in the following proposition.

Proposition 1 (Asymptotic time invariance). Consider a heterogeneous-agent block written using (14)-
(16). Assume that there is a unique ergodic distribution, and that vv has all eigenvalues inside the unit
circle. Then Ft,s converges exponentially to 0 as s + t → ∞. Moreover, the Jacobian J is asymptotically
time-invariant, that is, there exists a two-sided sequence A = (Aτ), τ ∈ Z such that

Jt+τ,t → Aτ as t→ ∞

for any τ ∈ Z.

The key to the proof is equation (30).23 Since Jt,s = Ft,s + Jt−1,s−1, as we move down the

23Observe that the conditions for proposition 1 are weak: it only requires ergodicity of the distribution and the
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diagonals of the Jacobian, we pick up terms from the fake news matrix. Panels (b) and (c) of figure
2 illustrate these terms in our example: (b) the large responses F·0, where households actually
earn a high r at date 0, and (c) some other F·s columns, where households save at date 0 due to
the fake promise of high future r. We see that Ft,s goes to zero both for high t (the effect of date-0
behavior through the distribution dies away) and for high s (the effect of far-out shocks on date-0
behavior dies away). It follows that Jt,s ≈ Jt−1,s−1 for high t and s.

Proposition 1 provides a useful theoretical benchmark against which check the quality of any
given implementation of a (direct or fake news) algorithm in practice. We will also return to it in
section 6, where it will form the basis of our determinacy criterion.

4 SHADE models and their Jacobians

So far we have shown how, in the Krusell and Smith (1998) model, one can apply the chain rule to
reduce the problem of finding impulse responses to that of finding the Jacobian of heterogeneous-
agent blocks, and we have written down a fast algorithm to compute these Jacobians. We now
show how to apply this idea systematically to a large class of models that encompasses many
commonly-used heterogeneous-agent models. We will call these SHADE models.

We continue to write Z for the path of exogenous shocks, but now allow Zt to be a nz× 1 vector
at each t. We replace the endogenous variable K with the more generic U, where Ut is an nu × 1
vector of “unknowns” at each t. Equilibrium is characterized by a system of equations in sequence
space:

H(U, Z) = 0 (34)

As in section 2, impulse responses to first order around the steady state are given by dU =

−H−1
U HZdZ, which requires that we calculate the Jacobians HU and HZ.
One difficulty that emerges in the general case is that the dimensionality can grow large

enough that solving the linear system is itself a bottleneck. When the system is truncated at time
T, HU has dimension nuT × nuT. Quantitative DSGE models often have dozens of endogenous
variables, and if all these are included as unknowns in (34), then nuT can potentially be as high as
10,000. This brings back the high dimensionality that our approach is intended to circumvent.

The literature solving MIT shocks typically reduces dimensionality by iterating on only a sub-
set of endogenous variables, and expressing all other variables as functions of these. We use a
similar approach to reduce nu. In our case, however, we also need to calculate the Jacobian of
the resulting system. To do so efficiently, we represent the model underlying H explicitly as a
directed acyclic graph (DAG), and compute Jacobians using forward accumulation along the graph,
a technique from the algorithmic differentiation literature (e.g. Griewank and Walther 2008).

eigenvalues of vv to lie inside the unit circle—the latter of which is satisfied whenever v is derived from a Bellman
equation (12) that is a contraction mapping.
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4.1 SHADE models

SHADE models consist of a combination of heterogeneous-agent blocks, as per definition 1, and
simple blocks, as per the following definition:

Definition 2. A simple block maps input sequences Xi, for i = 1, . . . , nx to output sequences Yo for
o = 1, . . . , ny. Stacking the Xi

t’s into a vector Xt, and the Yo
t ’s into a vector Yt, there must exist

k, l ∈N and a time-invariant function h such that Yt is only a function of neighboring Xt’s, that is,

Yt = h(Xt−k, . . . , Xt+l)

Simple blocks capture typical aggregate relationships in dynamic macro models. For instance,
a neoclassical firm sector can be represented as a simple block mapping Xt = (Kt, Zt) to Yt =

(Yt, rt, wt). Combining such a sector with a heterogeneous-agent block mapping Xt = (rt, wt)

to Yt = Kt({rs, ws}), as well as a simple block mapping Xt = (Kt, Kt) to market clearing Yt =

Kt − Kt, we obtain the Krusell-Smith model of section 2.
We define SHADE models as a generalization of this representation. These models map shocks

(like Zt) and unknowns (like Kt) to targets (like asset market clearing) along a directed acyclic graph.

Definition 3. A Sequence-space Heterogeneous-Agent Dynamic-Equilibrium (SHADE) model is:

1. A set of sequence indices N = Z ∪ U ∪O, where Z are exogenous shocks, U are unknowns, O
are outputs, andH ⊂ O are targets.

2. A set of blocks, each either simple or heterogeneous-agent blocks, indexed by B, where each
block b ∈ B has inputs Ib ⊂ N and outputs Ob ⊂ O. Each output o ∈ O belongs to exactly
one block. For each output o ∈ Ob, block b provides a function ho({xi}i∈Ib) mapping the
block’s input sequences to this output sequence. The directed graph of blocks, formed by
drawing an edge from b to b′ whenever some output o ∈ Ob is used as an input o ∈ Ib′ ,
must be acyclic.

3. The number of unknowns and targets must be equal, that is, nu = nh.

An equilibrium of a SHADE model, given sequences {Xi}i∈Z for the exogenous shocks, is a set of
sequences {Xi}i∈U∪O such that

1. Xo = ho({Xi}i∈Ib) for any output o ∈ O.

2. Xo = 0 for any target o ∈ H.

A steady state equilibrium is an equilibrium in which all sequences are constant over time, Xi
t = Xi

ss

for all i ∈ N .

An important part of this definition is that the blocks form a directed acyclic graph (DAG) if
we draw an edge from b to b′ to represent the dependency of b′ on the output of b. A directed
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acyclic graph always has a topological sort, meaning that there is some ordering b1, . . . , bnb of the
blocks—not necessarily unique—such that the inputs of each later block in the ordering are either
in Z ∪ U or outputs of earlier blocks. If we start with sequences {Xi, i ∈ Z ∪ U} for all shocks and
unknowns, we can evaluate the blocks along this ordering: first applying ho for each o ∈ Ob1 , then
for each o ∈ Ob2 , and so on. When we are done, we will have calculated all outputs, including the
targetsH.

We can view this procedure as a mapping from exogenous shocks and unknowns {Xi}i∈Z∪U
to targets {Xo}o∈H . We write this mapping in more condensed form as H(U, Z), where U is
defined as the stacked vector of unknown sequences {Xi}i∈U , Z is defined as the stacked vector of
exogenous sequences {Xi}i∈Z , and H(U, Z) itself is the implied stacked vector of targets {Xi}i∈H.
Since the procedure satisfies Xo = ho({Xi}i∈Ib) by construction, equilibrium is then equivalent to

H(U, Z) = 0 (35)

Figure 3a visualizes the DAG for the Krusell-Smith model, which has two blocks (neoclassical
firms, and heterogeneous households “HA”), one exogenous shock (productivity Z), one un-
known (capital K), four outputs (capital return r, wage w, household savings K, asset market
clearing H), and one target (asset market clearing H).24

One-asset HANK model. Figure 3b illustrates the DAG of our second example: a one-asset
HANK model similar to McKay et al. (2016). This model combines standard NK elements—sticky
prices, flexible wages, and a Taylor rule for monetary policy, but no capital—with a one-asset
incomplete market HA household sector where labor supply is endogenous. It is introduced for-
mally in Appendix A.2.

As one would expect, the DAG for this model is more complicated than for Krusell-Smith.
There are three unknowns (wages w, output Y, and inflation π) and three targets (a Phillips curve
condition H1, labor market clearing H2, and asset market clearing H3). We introduce two exoge-
nous shocks (productivity Z and Taylor rule intercept r∗).

The DAG makes it easy to visualize some of the dependencies embedded in the model: for
instance, the dividends from firms are distributed to households (according to a certain rule), so
the output d of the firm block is an input to the HA block. Similarly, the real interest rate r affects
the taxes required for the government to achieve its balanced-budget target, so r is an input to the
fiscal block, which has an output τ that is an input to the HA block.

There are many equivalent DAG representations of the same model, depending on which
model equations we solve out to write as simple blocks, and which equations we include only
as targets. This particular representation is chosen to minimize the number of targets nu = nh. A
lower nu lowers the size of the HU matrix, and this generally makes the system easier to solve.

24Not visualized are firm production Y or household consumption C, which could be additional outputs of the firm
and HA blocks, respectively, but are not strictly necessary since we are using asset rather than the goods market clearing
to define equilibrium.
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Figure 3: DAG representations of our Krusell-Smith and one-asset HANK economies
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Figure 4: DAG representation of our two-asset HANK economy
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Two-asset HANK model. Figure 3 illustrates the DAG for our third example: a two-asset HANK
model with household side similar to Kaplan et al. (2018), described in detail in appendix A.3. For
households, the model features liquid and illiquid assets with convex adjustment costs of portfolio
adjustment. On the supply side, it features wage as well as price rigidities, as well as capital with
quadratic adjustment costs. Hence investment follows the standard q theory equations.25

Monetary policy follows a standard interest rate rule. The government levies a distortionary
labor income tax to finance its debt and its expenditure on the final good. We assume a balanced
budget. Some government bonds are held by households directly (along with firm equity) as illiq-
uid assets, and the rest are transformed into liquid assets by a competitive financial intermediary.
This liquidity transformation incurs a proportional cost, which determines the equilibrium spread
between liquid and illiquid assets in all periods along perfect-foresight paths.

Scope of SHADE models. Our definition of SHADE models is general enough to encompass
the vast majority of models in the emerging heterogeneous-agent literature. This includes, for in-
stance, most heterogeneous-agent New Keynesian models, most models of firm life cycles (Hopen-
hayn 1992, Hopenhayn and Rogerson 1993), lumpy investment models as in Khan and Thomas
(2008), pricing models as in Golosov and Lucas (2007), or overlapping generation models as in
Conesa and Krueger (1999). The main omissions are in the class of models where decentralized
arrangements mean that agents in different parts of the distribution interact directly with each

25These q theory equations are embedded in the “production” block of the DAG. Technically, this block (displayed in
green) is what we called a solved block, which internally solves for the path of q and capital K given its inputs. Solved
blocks can speed up the evaluation of the model and simplify the DAG representation (see appendix B.3).
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other, in a way that cannot be intermediated through a limited number of aggregate variables. For
instance, in the model of on-the-job search in Burdett and Mortensen (1998), agents take the full
distribution of wages as an input to their decision problem, and it is impossible to represent this
via a DAG of feasible dimension.26

4.2 Jacobians of SHADE models and impulse responses

As in section 2, if H is differentiable, we can apply the implicit function theorem to equation (35)
to solve for the first order response of U, dU, in response to a transitory shock to Z, dZ, as:

dU = −H−1
U HZdZ (36)

In general, HU and HZ are complicated objects that depend on the entire model. The crucial ad-
vantage of the DAG structure of SHADE models, however, is that we can use forward accumulation,
a tool from the literature on algorithmic differentiation (Griewank and Walther 2008), to combine
the Jacobians of individual blocks to build up these objects. The key idea behind forward accu-
mulation is to apply the chain rule in the same order that we would evaluate a function itself.27

Total Jacobians J. To start, we need a new concept. For any exogenous shock or unknown i ∈
Z ∪U and any output o, let the Jo,i denote the total Jacobian of o with respect to i when o is evaluated
along the DAG. For instance, in the one-asset HANK model in figure 3b, the total Jacobian JN ,w

of household labor supply with respect to wages combines two forces: the direct effect of w on
household decisions, and the indirect effect working through the influence of w on firm profits
and therefore the dividends d received by households. This is in contrast to J N ,w, which is a
partial Jacobian that captures only the direct effect.

To obtain Jo,i through forward accumulation, we follow a procedure similar to that of the pre-
vious section. We initialize Ji,i to the identity for each i ∈ Z ∪ U . We then go through blocks fol-
lowing a topological sort b1, . . . , bnb , and for each block b we evaluate the following for all o ∈ Ob

and i ∈ Z ∪ U :
Jo,i = ∑

m∈Ib

J o,mJm,i (37)

Fundamentally, this is just the chain rule: for each input m, (37) takes the product of the partial
Jacobian J o,m with the already-calculated total derivative Jm,i of m with respect to i. (When m = i,
then the latter is the identity and the term is just the partial Jacobian J o,i.) The benefit of building
up the Jo,i progressively via forward accumulation, however, is that the chain rule is applied in an
efficient way, without redundant computations.

26Note, however, that SHADE models do not require approximate aggregation: agents are allowed to take into
account the effect on their decision problem from entire sequences of aggregate variables, and these sequences in turn
may be determined by a high-dimensional subspace of the distribution.

27In actual computations, the methods in this section will be applied on Jacobians that are truncated to some horizon
T × T, except when using our sparse methods for simple blocks described in the next section, where they can be exact.
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Table 3: Computing times for G.

Krusell-Smith one-asset HANK two-asset HANK

Without directed acyclic graph (DAG) 44.3 ms 251.1 ms 2072.8 ms

With DAG 6.8 ms 96.9 ms 402.1 ms
step 1 (forward accumulate HU and HZ) 1.3 ms 15.1 ms 131.4 ms
step 2 (compute GU ,Z = H−1

U HZ) 2.6 ms 43.4 ms 68.8 ms
step 3 (forward accumulate for all GU ,Z ) 2.8 ms 38.5 ms 201.9 ms

No. of unknowns (without DAG) 3 7 18
No. of unknowns (with DAG) 1 3 3
No. of exogenous shocks 1 3 7

General equilibrium Jacobians G. Using the J matrices, we can now obtain a full linear charac-
terization of general equilibrium in response to shocks dZ. We will write Go,z to denote the linear
mapping from shock z ∈ Z to output o ∈ O. These G matrices are the general equilibrium Jacobians
that map from any sequence of exogenous shocks, up to the truncation horizon T, to impulse re-
sponses for all variables o of interest. Such a complete first-order characterization of equilibrium
will prove invaluable when estimating shock processes in the next section.

In what follows, we adopt the notational convention that GU ,z is Gu,z stacked for all u ∈ U ,
Go,Z is Go,z stacked for all z ∈ Z , and so on. We have dXo = Go,ZdZ for all output variables o ∈ O
and stacked shocks dZ.

Algorithm for G. We now describe the algorithm to obtain G. To start, note that by (36), GU ,Z =

−H−1
U HZ. The first step is therefore to use forward accumulation on J’s (37) to obtain both HU =

JH,U and HZ = JH,Z . We then compute GU ,Z = −H−1
U HZ. Finally, initializing with GU ,Z (and

GZ ,Z equal to the identity), we perform forward accumulation28 to obtain all other Go,Z :

Go,Z = ∑
m∈Ib

J o,mGm,Z (38)

Interpreting G in terms of individual impulse responses. Each Go,Z has nzT columns, each of
which can be interpreted as the impulse response of o to some news shock. One way to think
about this approach, therefore, is that we are simultaneously calculating nzT general equilibrium
impulse responses. For our Krusell-Smith, one-asset HANK, and two-asset HANK models, nzT is
1× 300 = 300, 3× 300 = 900, and 3× 300 = 900, respectively.

Appendix B.4 discusses a related method that only calculates an individual impulse response.
Since G consists of hundreds of such impulse responses, it is no surprise that calculating G is

28An alternative approach for this final step is to directly write Go,Z = Jo,UGU ,Z + Jo,Z , calculating Jo,U and Jo,Z

for all o in the first forward accumulation step. Depending on the structure of the DAG, this may be more or less
computationally intensive; in practice, we have generally found that it is costlier.
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costlier. But interestingly, it is not too much more expensive: the times for our algorithm to calcu-
late G in table 3 are only above 5 times higher than those in table B.1. This efficiency in calculating
G is possible because we only need to calculate HU once, independent of shocks, and do all other
computations stacked together in matrices.

Comparing table 3 to table 2, we see that computing Gs is, in each of our cases, significantly
cheaper than applying the fake news algorithm to obtain J s for the heterogeneous-agent block:
for instance, it takes about 0.1 seconds for the one-asset HANK model, while the fake news algo-
rithm took 0.6 seconds. This shows the power of J s as sufficient statistics: once we have them, it
is just a matter of linear algebra to obtain a full characterization of equilibrium.

Comparison: times without DAG. How important is our directed acyclic graph (DAG) ap-
proach to writing and solving models? Table 3 also shows the time needed to compute G matrices
without taking advantage of the structure of our DAGs—by solving a large system of equations in
which every input in the DAG, aside from exogenous shocks Z , is turned into an unknown, and
every linkage in the DAG is turned into an equation. This turns out to be substantially slower, by a
factor that ranges from 2 to 10. The reason is that the dimensionality of the linear system becomes
so high that solving it is quite costly.

4.3 Efficient multiplication of simple Jacobians

One important detail underlying the speeds in table 3 is a set of special routines that efficiently
handle the Jacobians of simple blocks. These simple blocks comprise the majority of our DAGs.
Their Jacobians are easy to obtain to high accuracy (for instance, with symmetric numerical differ-
entiation), and have a special sparse structure: they can be expressed as linear combinations of a
few shift operators Si on sequences.

For positive i, Si maps (x0, x1, . . .)→ (0, . . . , 0, x0, x1, . . .), with i zeros inserted at the beginning,
and for negative −i, S−i maps (x0, x1, . . .) → (xi, xi+1, . . .). The former takes an i-period lag in
sequence space, while the latter takes an i-period lead in sequence space.29 For instance, in the
one-asset HANK economy depicted in figure 3b, the Jacobian J H1,π of the Phillips curve condition
with respect to price inflation π is S0 − 1

1+r S−1.30

For the most part, these operators obey simple rules: if i and j are both positive, SiSj = Si+j,
and so on. However, as is well known from an older literature that works with the lag algebra (e.g.
Whiteman 1983), the S are not quite closed under multiplication. To take the simplest example,
S1S−1, a one-period lag of a one-period lead, maps (x0, x1, x2, . . .)→ (0, x1, x2, . . .), zeroing out the
first entry of a sequence and leaving everything else unchanged. Fortunately, we have found a
more general set of operators that includes the S and is closed under multiplication following an
easy-to-compute rule, as we derive in the following proposition.

29In matrix form, Si has zeros everywhere, except for ones on the ith diagonal below the main diagonal.
30This corresponds to a linearized curve of the form πt = . . . + 1

1+r Etπt+1.
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Proposition 2. Let Si be the shift operator on sequences, and Zm be the “zero” operator that replaces the
first m entries of a sequence with zeros. If we define

Qi,m ≡

SiZm i > 0

ZmSi i < 0

then Qi,mQj,n = Qk,l , where
k = i + j (39)

and

l =



max(m− j, n) i, j ≥ 0

max(m, n) + min(i,−j) i ≥ 0, j ≤ 0

max(m− i− j, n) i ≤ 0, j ≥ 0, i + j ≥ 0

max(n + i + j, m) i ≤ 0, j ≥ 0, i + j ≤ 0

max(m, n + i) i, j ≤ 0

(40)

This proposition nests the shift operators Si in a more general class of operators Qi,m.31 This has
two advantages. First, it makes multiplying the Jacobians of simple blocks vastly more efficient:
rather than doing matrix multiplication with large T× T matrices, we just need to apply rules (39)
and (40) a few times. Second, it is computationally easy to multiply Qi,m and an ordinary matrix
Jacobian (or vector), since this is a combination of shifting and zeroing elements. Together, these
features make forward accumulation on the DAG, which consists mostly of simple blocks, vastly
more efficient.

In our online code, we implement this by simply overriding the matrix multiplication operator,
so that sparse linear combinations of Qi,m and ordinary matrices can be used interchangeably. With
this in place, the methods of section 4.2 can be applied without any outwardly visible modification.

Exploiting sparsity has played a prominent role in both the heterogeneous-agent literature
(e.g. Achdou et al. 2017) and the literature on solving for perfect-foresight paths using Newton’s
method (e.g. Juillard 1996). Our approach builds on the latter, but our much more compact repre-
sentation of Jacobians offers additional efficiencies. For instance, to store 0.5 · Q1,1, we only need
a few numbers, while a conventional T × T sparse matrix representation not taking advantage of
this structure would need T − 2 separate entries, and still create some truncation error.

4.4 Truncation error

Unlike model reduction for state-space methods, our dimensionality reduction using the DAG
does not itself involve any kind of approximation to the underlying model: it is just an efficient
way of rewriting the same model equations.

The one approximation that our methods do require—as is generally true for the sequence

31The matrix representation of Ti,m is the same as that of Si, except that the first m entries on the diagonal are zeros.
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Figure 5: Impulse response error as a function of the truncation horizon T

(a) TFP persistence ρ = 0.9
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(b) TFP persistence ρ = 0.99
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space—is that we truncate Jacobians at some finite horizon T, since it is infeasible to compute
using the infinite-horizon Jacobians that are relevant in the theory.32 For large enough T, the
results in any given time period eventually converge to the true equilibrium, but it is important to
verify that our results are valid for the T we use in practice.

Figure 5 performs one such exercise for our three models, showing the root mean squared error
(RMSE) in dY/Yss in the first hundred periods, relative to the true equilibrium impulse responses,
in response to a persistent 1% shock to TFP. As our benchmark for the true equilibrium, we use
the result obtained with an extremely long truncation horizon of T = 1000 (beyond which we find
minimal effect of T).

The left panel looks at the case of AR(1) persistence ρ = 0.9. We see that even for truncation
horizons T far shorter than the T = 300 used in this paper, the Krusell-Smith and one-asset HANK
models have almost perfect accuracy. The two-asset HANK, which has much greater internal
persistence, requires a longer T, but by T = 300 it is accurate to over seven digits, and with longer
truncation horizons steadily improves.

The right panel looks at an extreme case, with AR(1) persistence ρ = 0.99. For such a persistent
shock—which at t = 300 is still at 5% of its level on impact—a much longer truncation horizon is
appropriate. Still, the two-asset HANK has a RMSE of just over 10−5 with T = 300, and the other
models are even more accurate.

Overall, figure 5 confirms that although truncation horizons must be chosen judiciously—
extending beyond the period of interest and the persistence of the shock—horizons with excellent
computational performance are also very accurate for all but the most persistent shocks.

32The major exception is the technique for composing Jacobians from simple blocks in section 4.3, where proposition
2 is the exact multiplication rule for the infinite-dimensional Jacobians.
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5 Using Jacobians for fast estimation

A common way of confronting dynamic macroeconomic models with time-series data is to esti-
mate them using likelihood-based methods (see e.g. Smets and Wouters 2007 or An and Schorfheide
2007). The standard approach in the DSGE literature is to compute the likelihood by applying the
Kalman filter to the model’s state space representation. This approach is appropriate for models
with small state spaces. With the large state spaces that characterize heterogeneous-agent models,
however, solving for the likelihood in this fashion can become prohibitively slow.

In this section, we show how to use the sequence-space Jacobians to rapidly estimate mod-
els, and we perform an estimation exercise on US data using our model examples. We proceed
in three steps: we first identify impulse responses with the MA(∞) representation of the model,
we then use this equivalence to compute autocovariances from impulse responses, and we finally
compute the likelihood function from the autocovariances. Within the DSGE literature, this ap-
proach was previously followed by Mankiw and Reis (2007) and Schmitt-Grohé and Uribe (2010),
among others. Our key innovation is a process of recyling Jacobians to reevaluate the likelihood
which, together with our other innovations in the paper, results in an extremely fast estimation
procedure.

5.1 SHADE models with aggregate risk

We first show that the impulse responses computed so far correspond to the MA (∞) representa-
tion of the model with aggregate shocks. The idea leverages the certainty equivalence property of
linearization, as in Simon (1956), Theil (1957), Judd and Guu (1993), or Fernández-Villaverde et al.
(2016). Boppart, Krusell and Mitman (2018) were the first to observe that this property also holds
in heterogeneous agent models computed with small MIT shocks. In appendix C.3, we provide
a formal proof of this result. To do this, we set up a version of a general SHADE model with
aggregate risk. This stochastic SHADE model is still a collection of blocks, but these are now stochas-
tic blocks, mapping stochastic processes {X̃t} into one another, rather than sequences {Xt}. Our
results can be summarized as follows.

Assume that exogenous shocks in the model are given by a set of MA(∞) processes

dZ̃z
t =

∞

∑
s=0

mz
sεz

t−s

where there are as many processes as there are exogenous shocks z ∈ Z . Here, {εz
t } are mutually

iid standard normally distributed innovations, and {mz
s} are the MA coefficients of the shock to z.

We denote by mz the column vector that results from stacking the mz
s ’s.

For any output o ∈ O of the stochastic SHADE model, consider the MA(∞) representation of
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of the equilibrium sequence {dX̃o
t }

dX̃o
t =

∞

∑
s=0

∑
z∈Z

mo,z
s εz

t−s (41)

Our key result is that the MA coefficients mo,z ≡ (mo,z
s ) of output o in response to shock z can be

obtained by solving the associated perfect foresight SHADE model, that is, for any o ∈ O, z ∈ Z ,
we have:

mo,z = Go,zmz (42)

where Go,z is the general equilibrium Jacobian defined in section 4.2.
To understand why this is true, let us focus on a given shock z ∈ Z and assume that all shock

innovations are zero, except for εz
t = 1 in some period t. In that case, the expected path of dZ̃z

t

going forward is given by
Et
[
dZ̃z

t+s
]
= mz

s

Hence, this expected path corresponds to a shock mz = dZz to z in the perfect-foresight model. In
other words, the impulse response of output o is given by Go,zdZz = Go,zmz. In light of (42), then,
the MA(∞) representation of {dX̃o

t } is given by mo,z.33

We next use this equivalence property to perform estimation.34

5.2 Second moments and the likelihood function

Starting from the MA (∞) representation of the model, we first compute all second moments from
the impulse responses, and then compute the likelihood function from these second moments.

Second moments. The first step consists of computing the model’s autocovariance function. Let
Ô ⊂ O be the set of outputs whose second moments we would like to characterize, and denote
by dX̃t = (dX̃o

t )o∈Ô the vector-valued stochastic process of all outputs in Ô. Similarly, let mÔ,Z
t =

(mo,z
t )o∈Õ,z∈Z be the stacked |Ô| × nz matrix of MA coefficients of dX̃t. Then, the autocovariances

of dX̃t are given by

Cov(dX̃t, dX̃t′) =
T−(t′−t)

∑
s=0

[
mÔ,Z

s

] [
mÔ,Z

s+t′−t

]′
(43)

Equation (43) is the standard expression for the autocovariance function of an MA process (see, for
instance, Hamilton 1994). As is well-known, these autocovariances only depend on the distance
t′ − t, not on t and t′ separately.

33Of course, since in practice the G matrix is truncated to T × T horizon, the process is an MA (T − 1).
34A corollary to our equivalence result is that our sequence-space impulse responses correspond to impulse re-

sponses in the state-space formulation of the model, without any reduction in the dimensionality of the state space. The
ability to circumvent the “model reduction” step, which is a crucial but delicate aspect of state-space methods in large
heterogeneous-agent models (see Reiter 2010, Ahn et al. 2018, Bayer and Luetticke 2018), is a major advantage of our
approach.
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Figure 6: Selected second moments of the Krusell and Smith (1998) model for AR(1) TFP, ρ = 0.8
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In figure 6, we provide an illustration of second moments in a stochastic version of the Krusell
and Smith (1998) model, where the TFP shock follows an AR(1) process

dZ̃t = σ
∞

∑
s=0

ρsεt−s

with persistence ρ and innovations with standard deviation σ. The figure shows the correlations
of productivity, output, consumption, and capital with the underlying productivity process, at
various lags. The figure shows that capital and consumption—and to a much lesser extent, out-
put—tend to lag productivity. This reflects the typical transmission mechanism of TFP shocks in
RBC models.

In appendix B.5, we describe how (43) can be calculated in an very efficient way using the
fast Fourier transform (FFT). As table 7 reveals, for our estimation exercises in section 5.4, moving
from the MA(∞) representation to a full set of autocovariances, which are stacked in the matrix
V, takes between 0.5 and 2.5 milliseconds.

Likelihood function. The second step to estimation is to evaluate the likelihood function. Let

dX̃obs
t = B dX̃t + ut

denote the vector of nobs observables whose likelihood we would like to determine. Here {ut} is
iid normal with mean 0 covariance matrix Σu, and B is a nobs × |Ô| matrix. Since dX̃obs

t is a linear
combination of the εz

t and ut terms, it has a multivariate normal distribution. Moreover, its second
moments are a simple linear transformation of those of dX̃t:

Cov(dX̃obs
t , dX̃obs

t′ ) = 1t=t′ · Σu + B Cov(dX̃t, dX̃t′) B′ (44)
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We stack these covariances into a large symmetric nobsTobs × nobsTobs matrix V, where Tobs is the
number of time periods in our data. The log-likelihood function is then the conventional log
multivariate density. Dropping the constant term, it can be expressed as a function of the observed
data dX̃obs = (dX̃obs

t ) (stacked as nobsTobs-dimensional vector) as

L = −1
2

log det V− 1
2

[
dX̃obs

]′
V−1

[
dX̃obs

]
(45)

Appendix B.5 discusses efficient computation of (45), given V and dX̃obs. Our baseline approach
is to perform a Cholesky decomposition of V, from which we can quickly calculate both the log
determinant log det V and the quadratic form

[
dX̃obs]′ V−1 [dX̃obs]. Table 7 reveals that this is quite

efficient: calculating L takes about one millisecond or less in all applications except the two-asset
HANK, where it takes about 10 milliseconds.35

5.3 Reusing Jacobians for rapid estimation

The idea of using the MA (∞) representation of the model to perform estimation is not new. In-
stead, our key methodological innovation is to reuse sequence-space Jacobians in evaluating V for
different parameters. Almost any likelihood-based estimation methodology requires reevaluating
the likelihood function many times. Our methods make this extremely simple, provided that the
parameters that are changing keep the steady state intact. This is true of parameters that govern the
shock processes, as well as parameters that are only relevant for the transition, such as adjustment
cost parameters and policy rule coefficients.

To understand the benefit of reusing Jacobians, consider the DAG representation of equilib-
rium. In our method, the first evaluation of the likelihood computes the Jacobian of each block
individually, stores these Jacobians, and then rapidly composes them along the DAG to generate
impulse responses. Our key observation is that we can reuse many of these stored Jacobians when
recomputing the likelihood. In particular, shock processes do not change any Jacobian—allowing
us to calculate G once and reuse it for every evaluation—while most transition-relevant parame-
ters only alter simple block Jacobians, which are fast to recompute and combine.

Recycling the Jacobians is extremely useful in practice. To illustrate, consider from table 7 that
our two-asset HANK model estimation requires 8259 evaluations of the likelihood function. From
table 2, computing the household block Jacobian takes 5.7 seconds when using our fake news
algorithm, and 2107 seconds when using a direct method. Hence, estimation with no reuse of
Jacobians would take at least 13 hours when using our fake news algorithm, and a full 200 days
when using a direct algorithm.

We now provide details on our three estimation exercises.

35Alternatives to Cholesky for high T include Levinson recursion (e.g. Meyer-Gohde 2010) or the Whittle (1953)
approximation to the likelihood (e.g. Plagborg-Møller 2019).
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Table 4: Estimated parameters for our Krusell-Smith economy

Posterior
Shock Prior distribution Mode std. dev

TFP shock
s.d. Invgamma(0.4, 4) 0.178 (0.010)

AR-1 Beta(0.5, 0.2) 0.908 (0.035)
AR-2 Beta(0.5, 0.2) 0.330 (0.088)

5.4 Three estimation exercises

In this section, we perform Bayesian estimation exercises using our three example models. Our
primary objective here is to illustrate that this can be done very efficiently. In this spirit, our pro-
cedure is only to maximize the posterior to determine its mode, and to use a local Laplace approx-
imation around the mode to compute standard errors. We leave a full exploration of the posterior
distribution using Markov chain Monte Carlo methods, as well as a detailed understanding of the
economics behind the estimation results, to future research.

Our assumptions are the following. We assume that the priors for the standard deviations of all
shocks are Inverse-Gamma distributed with mean 0.4 and standard deviation 4. We assume that
the priors for persistence parameters are Beta distributed with mean 0.5 and standard deviation
0.2. We also assume no measurement error, Σu = 0. Initial conditions for parameters are set at
their prior modes. For each of our models, we use the data from Smets and Wouters (2007). We
linearly detrend the logs of all growing variables (output, consumption, investment, wages, hours)
and take out the sample mean of inflation and nominal interest rates. The individual models are
then estimated as follows.

Estimating Krusell-Smith. We estimate our Krusell and Smith (1998) model with just a single
shock, TFP, and a single time series {dXobs

t }, output. We assume TFP shocks to follow an AR(2)
process, (1− ρ1L)(1− ρ2L)dZ̃t = σεt,where L is the lag operator. We estimate the autoregressive
roots ρ1, ρ2 as well as the standard deviation σ. Table 4 shows the estimates, finding one persistent
root, ρ1 ≈ 0.9, and one less persistent root ρ2 ≈ 0.3.

Estimating the one-asset HANK model. We estimate our one-asset HANK model both with
only shock parameters, and with shock and model parameters together. In both cases, we use three
shocks (monetary policy shocks, government spending shocks, and price markup shocks) and
three time series (output, inflation, and nominal interest rates). Each shock is modeled as an AR(1)
with its own standard deviation and persistence. Thus, there are six shock parameters for this
model. The first two posterior columns in table 5 show our estimates when only estimating those
shock parameters; we find that government spending shocks are the most volatile and persistent.
The last two posterior columns in table 5 are the estimated shock and model parameters in the
joint estimation. We find a Taylor coefficient φ just above 1, a modest responsiveness of the Taylor
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Table 5: Estimated parameters for our one-asset HANK economy

Posterior (shocks) Posterior (shocks + model)
Parameter / shock Prior distribution Mode std. dev Mode std. dev

Monetary policy shock
s.d. Invgamma(0.4, 4) 0.443 (0.025) 0.257 (0.015)

AR-1 Beta(0.5, 0.2) 0.678 (0.021) 0.103 (0.052)

G shock
s.d. Invgamma(0.4, 4) 0.684 (0.044) 0.595 (0.038)

AR-1 Beta(0.5, 0.2) 0.816 (0.024) 0.878 (0.027)

P markup shock
s.d. Invgamma(0.4, 4) 0.150 (0.012) 0.285 (0.023)

AR-1 Beta(0.5, 0.2) 0.629 (0.046) 0.141 (0.069)

φ Gamma(1.5, 0.25) 1.055 (0.017)
φy Gamma(0.5, 0.25) 0.024 (0.010)
κ Gamma(0.1, 0.1) 0.325 (0.056)

rule to output φy, and a Phillips curve slope parameter κ around 0.3. These are typical values in
the literature.

Estimating the two-asset HANK model. We add all seven shocks from Smets and Wouters
(2007) to the two-asset model: shocks to TFP, government spending, monetary policy, price and
wage markups; the two exceptions are that we use discount factor shocks rather than “risk pre-
mium” shocks (both shock the Euler equation and are thus very similar), and we shock firms’
first-order conditions for capital instead of investment-specific technology shocks (which have
problematic implications for the relative price of investment, see Justiniano, Primiceri and Tam-
balotti 2010, 2011 and Schmitt-Grohé and Uribe 2012). We use those seven shocks to perfectly
match the time series of output, consumption, investment, hours, wages, nominal interest rates
and price inflation. As with the one-asset model, we estimate two versions of the model, one
with only shock parameters and one with shock and model parameters (table 6). Compared to the
one-asset model, we find here more responsive Taylor rule parameters φ, φy, and smaller Phillips
curve slope parameters κp, κw. We also estimate the degree of capital adjustment costs εI and find
it to be in line with standard estimates from the literature.

Estimation times. Table 7 lists the overall computing times for each of our five estimation exer-
cises, as well as times for each likelihood evaluation and their composition across the three steps.
Once the Go,z matrices are computed (table 3), the Krusell-Smith model’s likelihood can be eval-
uated in less than one millisecond, with an overall estimation time of around 120 milliseconds.
We attain similar speeds estimating the shock processes for the one-asset HANK model. Since
we allow for seven shocks when estimating the two-asset HANK model, estimating the shocks’
parameters is somewhat slower than in the other two models; this has nothing to do with the com-
plexity or micro heterogeneity of the two-asset model. Still, a single likelihood evaluation takes a
few milliseconds, and the entire estimation a few seconds.
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Table 6: Estimated parameters for our two-asset HANK economy

Posterior (shocks) Posterior (shocks + model)
Parameter / shock Prior distribution Mode std. dev Mode std. dev

TFP shock
s.d. Invgamma(0.4, 4) 0.222 (0.013) 0.223 (0.013)

AR-1 Beta(0.5, 0.2) 0.070 (0.043) 0.134 (0.063)

G shock
s.d. Invgamma(0.4, 4) 0.538 (0.030) 1.357 (0.218)

AR-1 Beta(0.5, 0.2) 0.885 (0.005) 0.830 (0.012)

β shock
s.d. Invgamma(0.4, 4) 1.079 (0.061) 1.077 (0.060)

AR-1 Beta(0.5, 0.2) 0.941 (0.011) 0.944 (0.007)

rI (investment) shock
s.d. Invgamma(0.4, 4) 0.674 (0.056) 0.881 (0.093)

AR-1 Beta(0.5, 0.2) 0.708 (0.028) 0.356 (0.073)

Monetary policy shock
s.d. Invgamma(0.4, 4) 0.610 (0.056) 0.469 (0.046)

AR-1 Beta(0.5, 0.2) 0.561 (0.038) 0.139 (0.062)

P markup shock
s.d. Invgamma(0.4, 4) 0.145 (0.010) 0.176 (0.027)

AR-1 Beta(0.5, 0.2) 0.042 (0.031) 0.206 (0.103)

W markup shock
s.d. Invgamma(0.4, 4) 1.944 (0.110) 2.042 (0.252)

AR-1 Beta(0.5, 0.2) 0.015 (0.011) 0.034 (0.024)

φ Gamma(1.5, 0.25) 1.407 (0.110)
φy Gamma(0.5, 0.25) 1.378 (0.257)
κp Gamma(0.1, 0.1) 0.075 (0.043)
κw Gamma(0.1, 0.1) 0.125 (0.035)
εI Gamma(4, 2) 2.998 (1.731)
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Table 7: Estimation times.

Krusell-Smith one-asset HANK two-asset HANK

shocks shocks model + shocks shocks model + shocks

Single likelihood evaluation 0.877 ms 2.151 ms 58.440 ms 11.422 ms 179.371 ms

step 1 (MA(∞): {mÔ,Z
t }) 0.020 ms 0.234 ms 56.279 ms 1.876 ms 167.094 ms

step 2 (autocovariances V) 0.673 ms 0.985 ms 0.963 ms 2.209 ms 2.436 ms
step 3 (log likelihood L) 0.184 ms 0.932 ms 1.198 ms 7.337 ms 9.842 ms

Full estimation 0.12 s 0.50 s 15.82 s 21.22 s 566.55 s
no. of evaluations 109 188 554 1544 8249

No. of shocks 1 3 3 7 7
No. of estimated shock parameters 3 6 6 14 14
No. of estimated model parameters 0 0 3 0 5
Total no. of estimated parameters 3 6 9 14 19

When model parameters are also estimated, the likelihood takes a bit longer to be re-evaluated.
This is entirely due to step 1—the computation of impulse responses. The single likelihood evalu-
ation for the two-asset model, for instance, takes 180 ms rather than 11 ms when model parameters
change. As noted above, we gain speed by reusing Jacobians, because many reevaluations of the
likelihood do not require updating model parameters and maintain Jacobians intact. This allows
us to still keep the average time it takes to evaluate likelihood below 70 ms, and for an overall
estimation time of around 9 minutes. To the best of our knowledge, these are much faster speeds
for estimation of such models than what any other method has been able to achieve.

6 Using Jacobians to evaluate determinacy

So far we have discussed model simulation and estimation without formally addressing the ques-
tion of determinacy: we have simply assumed a locally determinate solution.

This turns out to be necessary for our sequence space methods to work. If, instead, there is
local multiplicity, then there is a nonzero bounded solution dUmult to HUdUmult = 0, and this
singularity in HU implies that dU = −H−1

U HZdZ in (36) is not well-defined.
In practice, when HU is truncated to some finite T, this generically shows up as near-singularity

of the truncated HU. Then, when we calculate dU = −H−1
U HZdZ, the near-infinite entries of H−1

U

cause dU to explode, and its entries are meaningless. Eyeballing dU can thus provide a useful
heuristic test of multiplicity. Directly testing HU for near-singularity—for instance, by looking at
the singular values—provides additional evidence.

These are only, however, approximate criteria. In this section, we provide instead an exact deter-
minacy criterion that makes use of the asymptotic structure of the HU matrix of SHADE models,
and is simple to evaluate. This provides a sequence-space counterpart to the well-known determi-
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nacy tests (e.g. Blanchard and Kahn 1980, Klein 2000, or Sims 2002) for linear rational expectations
models in state-space form, filling an important gap in the literature. And since our criterion can
be evaluated much more quickly than state-space tests for large heterogeneous-agent models, it
may prove useful for the rapidly growing literature on determinacy in this area (see, for example,
Ravn and Sterk 2017, Acharya and Dogra 2019, and Bilbiie 2019).36

Throughout this section, we focus on SHADE models whose heterogeneous-agent blocks ad-
mit the discretized representation in (14)–(16). We first define local determinacy of a SHADE
model, paralleling the definition in Woodford (2003).

Definition 4 (Local determinacy). A generic SHADE model is locally determinate if, to first order,
it admits at most a single bounded equilibrium.

Our condition for determinacy is based on the asymptotic behavior of the Jacobian HU, which
is characterized by the following lemma.

Lemma 1. The Jacobian HU of a SHADE model is asymptotically time-invariant, that is,

HU '



∗ ∗ . . . . . .

∗ ∗ A−1 A−2
. . .

. . . A1 A0 A−1 A−2
. . .

. . . A2 A1 A0 A−1
. . .

. . . A2 A1 A0
. . .

. . . . . . . . . . . .


(46)

where Aj ≡ lims→∞ HUs,s+j = lims→∞
∂Hs+j
∂Us

, j ∈ Z, are k× k matrices. The sequence (Aj) is absolutely
summable entry-by-entry.

Lemma 1 follows from the fact that both simple and heterogeneous-agent blocks admit asymp-
totically time-invariant Jacobians. This is true by definition for simple blocks, and follows from
Proposition 1 for heterogeneous-agent blocks. Moreover, the composition of blocks into a SHADE
model preserves asymptotic time invariance.

Lemma 1 is useful because it allows us to characterize the behavior of the model solution dUt

for large t. To explain where our criterion comes from and how it relates to the standard state-
space criteria, we begin with a heuristic derivation.

Heuristic derivation. Suppose that Aj is only nonzero for finitely many j ∈ {−l, . . . , m}, and
that dUt has only one dimension. Suppose further that t is large enough that the impact of the

36For example, Ahn et al. (2018) after model reduction requires performing a Schur decomposition on a 2445×2445
matrix, which takes us approximately 6 seconds, compared to 631 microseconds in Table 1 for evaluating determinacy
in the two-asset model once given HU (which requires 110 milliseconds to compute in Table B.1).
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shock on the model H, HZdZ, has vanished. Under these simplifying assumptions, the equation
HUdU = −HZdZ can be written, for large enough time t, as:

m

∑
j=−l

AjdUt−j = 0 (47)

Equation (47) is a linear difference equation for dUt, expressing dUt at every t as a function of m
predetermined values {dUt−m, . . . , dUt−1} and l future values {dUt+1, . . . , dUt+l}. Let {zi}m+l

i=1 be
the m + l complex solutions to the polynomial equation

m

∑
j=−l

Ajzm−j = 0

and assume for simplicity that all these roots are distinct and ordered such that |z0| ≤ · · · ≤ |zn| ≤
1 < |zn+1| ≤ . . . |zm+l |, that is, n is the number of roots inside the unit circle. Then, by standard
results, the set of solutions to (47) is characterized by

dUt =
m+l

∑
i=1

Cizt
i (48)

Moreover, the boundedness requirement in definition 4 imposes that Ci = 0 for i ≥ n + 1. The
resulting system is determinate when the n remaining unknown coefficients {Ci} can be solved for,
given the m predetermined values {dUt−m, . . . , dUt−1}. Since all the zi are distinct, this is possible
if and only if the number of roots inside the unit circle is equal to the number of predetermined
variables, that is, if and only if n = m. If n > m, then there is multiplicity.

The idea of counting roots vs. predetermined variables also underlies existing state-space
determinacy criteria, such as Blanchard and Kahn (1980). For SHADE models that are only made
of simple blocks, both l and m are finite and this criterion can be applied exactly. But for general
SHADE models that include heterogeneous-agent blocks, l and m are generally infinite and an
alternative criterion is needed.

An alternative way to state the n = m condition is to say that the Laurent polynomial

A(z) ≡
m

∑
j=−l

Ajzj

has exactly as many zeros inside the unit circle as it has poles (it has l poles and m + l − n zeros).
If, on the other hand, there are fewer zeros than poles, then n > m and there is multiplicity.

According to the argument principle, the number of zeros and poles coincide if and only if

1
2πi

∮
C

A′(z)
A(z)

dz = # zeros in unit circle− # poles in unit circle = 0 (49)

where C is the counterclockwise unit circle in the complex plane. Substituting w = f (z), the
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integral in (49) becomes 1
2πi

∮
A(C)

1
w dw, which is the winding number of the curve A(C) around the

origin—the number of times it winds counterclockwise around the origin. We can parameterize
the curve A(C) as

A(λ) ≡
m

∑
j=−l

Ajeijλ; λ ∈ [0, 2π] (50)

Our criterion then states that there is a unique solution if and only if the winding number ofA(λ)
is zero. A negative winding number corresponds to multiplicity.

In principle, one can evaluate A(λ) and compute its winding number even if m and l are
infinite, and it turns out that the criterion continues to work correctly in this case. It also extends to
the case where dX is multidimensional, provided that one uses the winding number of detA (λ).
We have the following result, formally proven in the appendix.

Proposition 3. A SHADE model is locally determinate if and only if the winding number of detA(λ) is
equal to zero.

This result is powerful since it provides us with a direct and efficient way to check for deter-
minacy of a SHADE model:

1. First, after constructing the Jacobian HU, store Aj’s as the entries above and below the main
diagonal for a far-out column of HU . For instance, if the truncation horizon is T = 300, we
can store the entries in rows 0 through 299 of column 150 as A−150 through A149.37

2. Second, using these Aj, calculate the winding number of detA(λ), i.e. the number of times
the graph of detA(λ) wraps counterclockwise around the origin as λ goes from 0 to 2π.38

Table 1 shows that this method, given HU, is almost instantaneous, taking less than one millisec-
ond for each of our models.

A direct predecessor to proposition 3 is a winding-number based determinacy condition for
linear rational expectations equilibria proposed by Onatski (2006). Onatski’s condition is stated
identically in terms of the winding number of detA(λ), but it can only be applied in the case
where HU is exactly time invariant, that is HUs,s+j = Aj for every s. In the standard formulation of
SHADE models, this is almost never the case when there are heterogeneous-agent blocks. How-
ever, the proof of proposition 3 shows how to transform any SHADE model into a much larger but
equivalent model that has an exactly time invariant Jacobian, so that the Onatski (2006) criterion
can be applied and connected to the asymptotically time-invariant representation (46).

37An alternative approach, which bypasses needing the full HU and can in principle deliver greater accuracy, is to
construct the asymptotic Ajs in (46) for the model from those of individual blocks by convolution, which can be done
efficiently with the FFT. We use the HU approach for simplicity, since it is equally accurate for our examples.

38One efficient way to do so is to sample (50) at a large number of equispaced points on the interval [0, 2π] using
the fast Fourier transform (FFT)—which allows all these values to be computed simultaneously—and then count how
many times the resulting piecewise linear curve crosses the ray from 0 to positive real infinity from below.
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Figure 7: detA(λ) for determinate and indeterminate cases of the one-asset HANK model

(a) Indeterminate case: φ = 1.001
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(b) Determinate case: φ = 1.007
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One-asset HANK example. We illustrate proposition 3 by applying it to our one-asset HANK
model, using the parameterization described in appendix A.2. Since the model has 3 unknowns
and 3 targets, the Aj’s are 3× 3 matrices. The two panels in figure 7 plot detA(λ) for two values
of φ, the slope of the Taylor rule with respect to inflation. In panel (a), φ = 1.001. As can be
seen, detA(λ) wraps once counterclockwise around the origin, implying local indeterminacy. This
shows that the standard Taylor principle for representative agent New Keynesian models fails for
this HANK model. However, in our baseline parameterization, the Taylor coefficient threshold
for determinacy is very close to 1. Indeed, panel (b) of figure 7 shows that raising φ to 1.007 shifts
the contour such that it no longer wraps around the origin, indicating a locally determinate model.
Using bisection, we find that the determinacy threshold φ∗ is about φ∗ ≈ 1.005.

How does φ∗ depend on the slope κ of the Phillips curve? Given our determinacy criterion, it is
straightforward to bisect and find φ∗ for many values of κ. Panel (a) of figure 8 plots the resulting
φ∗ as a function of the slope of the Phillips curve κ. For our main calibration, it turns out that φ∗ is
increasing in price flexibility but remains close to 1 in all instances, never moving far from the rep-
resentative agent benchmark. For an alternative calibration, where we follow McKay et al. (2016)
and make idiosyncratic income risk procyclical by evenly rebating countercyclical dividends to all
agents, φ∗ is similar for more flexible prices but is much lower when prices are very sticky. This
latter finding is consistent with a growing analytical literature (see Ravn and Sterk 2017, Acharya
and Dogra 2019, or Bilbiie 2019) finding that procyclical risk makes determinacy easier to achieve,
while countercyclical risk pushes toward indeterminacy.

Comparison to numerical determinacy criterion. As discussed at the top of this section, an al-
ternative way to check determinacy is to evaluate the HU matrix numerically: in cases of indeter-
minacy, the true HU is singular, and the truncated HU is nearly singular.
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Figure 8: Checking determinacy

(a) Determinacy threshold vs. price flexibility

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Phillips curve slope κ

0.92

0.94

0.96

0.98

1.00

Ta
yl

or
φ

π
ne

ed
ed

fo
r

de
te

rm
in

ac
y

main calibration
procyclical risk

(b) Winding number criterion vs. singular value ratio

0.96 0.98 1.00 1.02 1.04
Taylor rule coefficient φ

0.0

0.2

0.4

0.6

0.8

1.0 winding number + 1
singular value ratio

When determinacy is uncertain, often there is at most a single dimension of indeterminacy,
as in our application above. This suggests a simple test involving singular values: if the smallest
singular value is far below the second-smallest, then the model is likely indeterminate, while if
they are similar, the model is likely determinate. Panel (b) of figure 8 implements this test, plotting
the ratio of smallest and second-smallest singular values (“singular value ratio”) as we vary φ in
the baseline calibration. This is plotted against the winding number plus one, which steps up
from 0 to 1 at exactly the point where the model becomes determinate. We see that although the
ratio of singular values gives a consistent answer—increasing from 0 to 1 near the determinacy
threshold—it offers less precise guidance, making clear the advantage of our winding number
criterion.39

7 Using Jacobians to solve nonlinear MIT shocks

Up until now, we have demonstrated that the sequence-space Jacobian is sufficient to capture all
first-order effects of heterogeneity. Once we compute its value at the steady state, we can obtain
impulse responses, evaluate local determinacy, and compute the model likelihood just as easily as
if we were dealing with a representative-agent model. Our methods preserve the nonlinear effects
of idiosyncratic uncertainty, such as heterogeneous MPCs. However, linearization with respect to
aggregates eliminates any dependence on the size and sign of aggregate shocks: the response to
large shocks is just a scaled-up version of the response to small shocks.

39One benefit of using singular values is that the right singular vector associated with the smallest singular value
corresponds to a dU that approximately solves HUdU = 0. This allows us to characterize and study the multiplicity.
This points to a hybrid approach: first, use the efficient and precise winding number criterion to test determinacy.
Second, if multiplicity is revealed, use a singular value decomposition to solve for the approximate null vector dU. This
approach can therefore in principle be applied to solve indeterminate models, as in e.g. Lubik and Schorfheide (2003).
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In this section, we provide a method for solving nonlinear perfect-foresight transitions starting
from steady state. Technically, we look for a nonlinear solution to equation (34). The interpretation
of such a solution requires caution. The resulting impulse response can no longer be viewed as
emerging from a model with aggregate shocks. Instead, it requires a strict interpretation as the
dynamic effect of a large unexpected shock, starting from steady state—a pure “MIT shock”.

On the other hand, this nonlinear solution has some important benefits. First, it allows the
researcher to explore size dependence and sign asymmetries, which have gathered some attention
in the literature (see e.g. Kaplan and Violante 2018 in the context of fiscal policy and Berger et al.
2018 for house price changes). Second, it allows the researcher to perform a test of the accuracy of
the linearization, as recommended by Boppart et al. (2018).

Since we have already computed the sequence-space Jacobian, it is natural to look for nonlinear
solutions to (34) by using a version of Newton’s method.40 To find the U that solves H (U, Z) = 0
for a given Z, with all sequences truncated to T = 300, we proceed as follows:

1. Starting from j = 0, guess a path U0 (typically, U0 = Uss)

2. Calculate H (U, Z)

3. Update the guess according to

Uj+1 = Uj − [HU (Uss, Zss)]
−1 H

(
Uj, Z

)
This algorithm falls in the class of quasi-Newton methods, since the steady-state sequence space
Jacobian HU (Uss, Zss) is used instead of the actual Jacobian HU

(
Uj, Z

)
.41

We illustrate this method in the case of our one-asset HANK model. Because it has flexible
wages and endogenous labor supply, it is the model that features the biggest nonlinearities among
those that we are considering. Figure 9 presents the nonlinear impulse response of the model to
a monetary policy shock starting from the steady state at t = 0. Panel (a) plots the impulse
response of consumption after a -1pp shock to the Taylor rule. Consumption increases, as is typical
following a monetary policy shock, and the magnitude is essentially identical to the linear impulse
response. Panel (b) plots the impulse response of consumption with a -5pp shock. Here, in the
nonlinear solution, consumption increases by slightly less than in the linear solution.

There are two potential economic reasons for nonlinearities in this type of model. First, non-
linearities in adjustment costs, such as the resource costs of price adjustment in the Rotemberg
model, start to kick in for large shocks. Second, large shocks can move constrained households
away from the borrowing limit. Here, a combination of these two forces is likely at work. How-
ever, note that the nonlinearities are very slight, even though the shock is implausibly large. Our

40This general idea dates back to Laffargue (1990), Boucekkine (1995), and Juillard (1996), and is implemented in
Dynare’s perfect-foresight solution method, whose command is perfect_foresight_solver.

41For heterogeneous-agent models, previous versions of this method were used by generating approximations to the
HU (Uss, Zss) matrix. Auclert and Rognlie (2018) used an auxiliary model, while Straub (2017) used interpolations to
approximate the Jacobian from a limited number of partial equilibrium transitions.
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Figure 9: Linear vs. nonlinear impulse responses of consumption to monetary shocks
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(b) 5pp shock to Taylor rule
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model therefore passes the Boppart, Krusell and Mitman (2018) test, suggesting that there is little
reason to be concerned about the accuracy of linearization for a typical monetary shock.

The algorithm above converges to |H| < 10−8 in 5 iterations for the 1pp shock, and in 8 itera-
tions for the 5pp shock—the latter taking slightly longer due to the larger role of nonlinearities. By
contrast, MIT shock methods that rely on ad-hoc adjustment criteria frequently require hundreds
of iterations before convergence of equilibrium sequences. This faster convergence to equilibrium
with our quasi-Newton based method constitutes our final methodological contribution.42

8 Conclusion

This paper presents a highly efficient method for computing heterogeneous-agent models. The
core idea is that sequence-space Jacobians are sufficient statistics that summarize all we need to
know about the heterogeneity in order to determine general equilibrium dynamics. We make five
methodological contributions that turn this idea into a systematic algorithm for solving and esti-
mating a large class of models. We provide a fast “fake news” method for computing Jacobians for
heterogeneous agents, a technique to substantially reduce dimensionality by representing equilib-
rium as a directed acyclic graph, a rapid procedure for likelihood-based estimation based on the
MA (∞) representation of the model, a winding-number based determinacy condition for the se-
quence space, and a Newton-type method to solve nonlinear perfect-foresight transitions.

Our methods allow us to estimate a two-asset HANK model in under ten minutes, which had
so far been out of reach for the literature. We hope that they will prove useful to solve and estimate
alternative heterogeneous-agent models and facilitate new developments in the field.

42Table 1 also reports times for nonlinear impulse responses for all models, which range from 0.18 s for Krusell-Smith
to 27 s for two-asset HANK. For comparability, these numbers are for a 1% shock to TFP, which is available in every
model.
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Appendix to “Using the Sequence-Space Jacobian to Solve
and Estimate Heterogeneous-Agent Models”

A Model descriptions

A.1 Calibration of the Krusell-Smith economy

We follow a standard calibration. We assume that P (e, e′) discretizes a log AR(1) process,

loget = ρloget−1 + σεt

with normal innovations εt ∼ N (0, 1). We use the Rouwenhorst method for discretization. Table
A.1 summarizes the rest of our calibration. “Baseline” refers to our baseline calibration with 3500
idiosyncratic states. “HD” refers to our high-dimensional calibration with 250,000 idiosyncratic
states.

Table A.1: Calibration of our Krusell-Smith economy

Parameter Value (baseline) Value (HD)

r Real interest rate 0.01 —
σ Risk aversion 1 —
α Capital share 0.11 —
δ Depreciation rate 0.025 —
ρ Skill mean reversion 0.966 —
σ/
√

1− ρ2 Cross-sectional std of log earnings 0.5 —
ne Points in Markov chain for e 7 50
nk Points on asset grid 500 5000

A.2 One-asset HANK model

This is an economy without capital, but with nominal rigidities.

Households.

Households now get to choose labor supply in addition to consumption and savings to maximize
a standard separable utility function. A household in state e working nt hours earns labor income
wtnte, pays a lump-sum tax τ (e) τt, and receives dividend d (e) dt per period from his ownership
of a nontradable firm share. The only asset households can trade is one-period nominal bond that

51



pays rt in real terms. All in all, the Bellman equation can be written as

Vt(e, a−) = max
c,n,a

{
c1−σ

1− σ
− ϕ

n1+ν

1 + ν
+ β ∑

e′
Vt+1(e′, a)P(e, e′)

}
c + a = (1 + rt)a− + wten− τtτ̄(e) + dtd̄(e)

a ≥ 0

The solution is a collection of policy functions ct (e, a−) , nt (e, a−) and at (e, a−) that depend on the
paths {rs, ws, τs, ds}s≥t that households take as given. Analogously to section 2, we can summarize
the household block by aggregate consumption, labor supply and asset demand functions

Ct
(
{rs, ws, τs, ds}s≥0

)
≡
∫

ct (a, e) dDt (e, a−) (51)

Nt
(
{rs, ws, τs, ds}s≥0

)
≡
∫

ent (a, e) dDt (e, a−) (52)

At
(
{rs, ws, τs, ds}s≥0

)
≡
∫

a dDt (e, a−) (53)

Firms.

There is a continuum of identical firms that produce differentiated goods using labor only. To
preserve symmetry, we assume that firm employs a representative workforce. They engage in
monopolistic competition and set the price of their product subject to the usual iso-elastic demand
curve and quadratic adjustment costs. The Bellman equation of firm j is

Jt(pjt−1) = max
yjt,pjt,njt

{
pjt

pt
yjt − wtnjt −

µ

µ− 1
1

2κ

[
log(1 + πjt)

]2
Yt +

Jt+1(pjt)

1 + rt+1

}
s.t. yjt = Ztnjt

yjt =

(
pjt

pt

)− µ
µ−1

Yt

This is a standard problem that yields the following equilibrium conditions:

• Phillips curve:

log(1 + πt) = κ

(
wt

Zt
− 1

µ

)
+

1
1 + rt+1

Yt+1

Yt
log(1 + πt+1). (54)

• Production:
Yt = ZtNt (55)

• Price adjustment cost:

ψt =
µ

µ− 1
1

2κ

[
log(1 + πt)

]2
Yt. (56)

52



Table A.2: Calibration of our one-asset HANK economy

Parameter Value Target

Households
β Discount factor 0.976 r = 0.0125
ϕ Disutility of labor 0.786 N = 1
σ Inverse IES 2
ν Inverse Frisch 2
b Borrowing constraint 0
ρe Autocorrelation of earnings 0.966
σe Cross-sectional std of log earnings 0.5

Firms
µ Steady-state markup 1.2
κ Slope of Phillips curve 0.1

Policy
B Bond supply 5.6
φ Taylor rule coefficient on inflation 1.5
φy Taylor rule coefficient on output 0

Discretization
ne Points in Markov chain for e 7
na Points on asset grid 500

• Dividends:
dt = Yt − wtNt − ψt (57)

Policy and market clearing

The government runs a balanced budget, maintaining a constant level of bonds B by adjusting
taxes. Monetary policy sets the nominal rate according to a Taylor rule that is subject to a shock r∗t

τt = rtB, (58)

it = r∗t + φπt + φy (Yt −Yss) (59)

1 + rt =
1 + it−1

1 + πt
(60)

Market clearing requires that B = At, Nt = Nt and Yt = Ct + ψt.

Calibration.

The calibration mostly follows McKay et al. (2016) and is summarized in table A.2.
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A.3 Two-asset HANK model

This embeds a two-asset household block, described in more detail in section B.1, into a New
Keynesian model.

Households.

Income zit is determined as
zit = (1− τt)wtNteit (61)

where eit is individual productivity following a Markov process as in the other models. All in all,
the household block takes as inputs the sequences of interest rates {ra

s , rb
s}, wage per efficiency

units {ws}, labor tax rate {τs} and labor demand {Ns} as inputs. The relevant outputs are illiquid
asset demand, liquid asset demand, productivity-weighted marginal utility, consumption, and
portfolio adjustment costs:

At

(
{ra

s , rb
s , ws, τs, Ns}

)
=
∫

a dDt(e, b, a), (62)

Bt

(
{ra

s , rb
s , ws, τs, Ns}

)
=
∫

bt(e, b, a) dDt(e, b, a), (63)

Ut

(
{ra

s , rb
s , ws, τs, Ns}

)
=
∫

e · ct(e, b, a)−σ dDt(e, b, a), (64)

Ct

(
{ra

s , rb
s , ws, τs, Ns}

)
=
∫

ct(e, b, a) dDt(e, b, a), (65)

Pt

(
{ra

s , rb
s , ws, τs, Ns}

)
=
∫

Φ(at(e, b, a), a) dDt(e, b, a). (66)

The last two are required only for checking the omitted goods market clearing condition.

Labor unions.

We assume that every household provides a continuum of differentiated labor services, each of
which is represented by a labor union. Unions set hours and wages to maximize the average
utility of members, taking as given their consumption-savings decisions as well as the decisions
of other (identical) unions. Changing the nominal wage incurs quadratic adjustment costs. The
Bellman equation of union k is

Ut(wkt−1) = max
nkt,wkt

∫
u(cit)− v(nkt) dDt −

µw

1− µw

1
2κw

[
log(1 + πw

kt)
]2

Nt + βUt+1(wkt)

s.t. nkt =

(
wkt

wt

)− µw
µw−1

Nt

where πw
kt is wage inflation

πw
kt = (1 + πt)

wkt

wkt−1
− 1. (67)
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This setup is almost identical to that in Auclert et al. (2018) and, as shown there, leads to a wage
Phillips curve of the form

log(1 + πw
t ) = κw

[
ϕN1+ν

t − µw(1− τt)wtNtUt

]
+ β log(1 + πw

t+1). (68)

For convenience later on, let’s introduce the following shorthand for wage adjustment costs

ψw
t =

µw

1− µw

1
2κw

[
log(1 + πw

t )
]2

Nt. (69)

Firms.

Let there be a continuum of identical firms that produce differentiated goods using labor and cap-
ital. They own capital, and hire a representative workforce from the labor union. They engage in
monopolistic competition and set the price of their product subject to the usual iso-elastic demand
curve and quadratic adjustment costs. The Bellman equation of firm j is

Jt(k jt−1, pjt−1) = max
yjt,pjt,k jt,ijt,njt

{
pjt

pt
yjt − wtnjt − ijt −

µp

µp − 1
1

2κp

[
log(1 + πjt)

]2
Yt

− 1
2δεI

(
k jt − k jt−1

k jt−1

)2

k jt−1 +
Jt+1(k jt, pjt)

1 + rt+1

}
s.t. yjt = Ztkα

jt−1n1−α
jt

yjt =

(
pjt

pt

)− µp
µp−1

Yt

k jt = (1− δ) k jt−1 + ijt

This is a standard problem that yields the following equilibrium conditions

• Phillips curve:

log(1 + πt) = κp

(
mct −

1
µp

)
+

1
1 + rt+1

Yt+1

Yt
log(1 + πt+1). (70)

• Labor demand:
wt = (1− α)

Yt

Nt
mct. (71)

• Valuation:

(1 + rt+1)Qt = α
Yt+1

Kt
mct+1 −

[
Kt+1

Kt
− (1− δ) +

1
2δεI

(
Kt+1 − Kt

Kt

)2
]
+

Kt+1

Kt
Qt+1. (72)
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• Investment:
Qt = 1 +

1
δεI

Kt − Kt−1

Kt−1
. (73)

• Capital law of motion:
It = Kt + (1− δ)Kt−1 (74)

• Production:
Yt = ZtKα

t−1N1−α
t (75)

• Price adjustment cost:

ψ
p
t =

µp

µp − 1
1

2κp

[
log(1 + πt)

]2
Yt (76)

• Dividends:
dt = Yt − wtNt − It − ψt (77)

Policy.

Fiscal policy follows a balanced-budget policy

τtwtNt = rtBg + Gt, (78)

Monetary policy follows an interest rate rule

it = r∗t + φπt + φy (Yt −Yss) (79)

1 + rt =
1 + it−1

1 + πt
(80)

r∗t is exogenous. (81)

Assets.

The economy has two assets, nominal government bonds and firm equity, both illiquid by default.
The ex-post real return on government bonds is simply rt. Let pt denote the ex-dividend price of
equity. The real return on equity is

dt+1 + pt+1

pt
.

In the absence of aggregate uncertainty, these assets have to earn the same return and so we get
the following no arbitrage condition

pt =
dt+1 + pt+1

1 + rt+1
. (82)

If bonds and equity are both illiquid, where do liquid assets come from? We assume that there
is a representative financial intermediary endowed with the technology to turn illiquid nominal
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assets into liquid nominal assets. This process has a proportional cost ω. This simple setup implies
that

rb
t = rt −ω. (83)

Market clearing.

The only market clearing conditions not implied implicitly by notation are that of goods and assets

Yt = Ct + Gt + It + Pt + ωBt + ψ
p
t + ψw

t , (84)

At + Bt = pt + Bg. (85)

Accounting for surprise inflation and capital gains.

When an unanticipated shock hits, the no arbitrage condition (82) will fail for one period due to
surprise inflation and capital gains. Accounting for these effects requires further assumptions on
the illiquid portfolio of households. For simplicity, we assume that all households hold the same
ratio of bonds and equity. This means that the ex-post illiquid return can be written as

1 + ra
t =

pt−1

At−1
· dt + pt

pt−1
+

Bg −Bt−1

At−1
· (1 + rt). (86)

This equation holds both in periods with and without unexpected shocks. We could stop here, but
then we would have to add ra

t to the unknowns of the DAG. The reason is that it is an input of
the household block that also depends on outputs of the household block. We can avoid this by
replacing (86) with

1 + ra
t =

p
A ·

dt + pt

pt−1
+

Bg −B
A · (1 + rt). (87)

The difference is the use of steady-state portfolio shares. These are targeted in the calibration,
and thus effectively exogenous. Importantly, they are the correct shares in period 0, when the
unexpected shock hits. Although they are incorrect in periods t > 0, this does not matter, because
by then the no arbitrage condition (82) is restored.

Calibration. Table A.3 summarizes the calibration of our two-asset model.

B Computational details

B.1 Two-asset household model algorithm

In this section we describe a generic two-asset household model with convex adjustment costs
in an illiquid asset whose return is superior to that of a liquid asset, in the spirit of Kaplan et al.
(2018). We then describe an efficient algorithm, based on the endogenous gridpoints approach of
Carroll (2006), to solve this model.
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Table A.3: Calibration of our two-asset HANK economy

Parameter Value Target

Households
β Discount factor 0.976 r = 0.0125
σ Inverse IES 2
χ0 Portfolio adj. cost pivot 0.25
χ1 Portfolio adj. cost scale 6.416 B = 1.04Y
χ2 Portfolio adj. cost curvature 2
b Borrowing constraint 0
ρe Autocorrelation of earnings 0.966
σe Cross-sectional std of log earnings 0.92

Labor unions
ϕ Disutility of labor 2.073 N = 1
ν Inverse Frisch elasticity 1
µw Steady state wage markup 1.1
κw Slope of wage Phillips curve 0.1

Firms
Z TFP 0.468 Y = 1
α Capital share 0.33 K = 10Y
µp Steady-state markup 1.015 A+ B = 14Y
δ Depreciation 0.02
κp Slope of price Phillips curve 0.1

Financial intermediary
ω liquidity premium 0.005

Policy
τ Labor tax 0.356 budget balance
G Government spending 0.2
Bg Bond supply 2.8
φ Taylor rule coefficient 1.5
φy Taylor rule coefficient on output 0

Discretization
ne Points in Markov chain for e 3
nb Points on liquid asset grid 50
na Points on illiquid asset grid 70
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Generic setup. Households’ individual state variables are (exogenous) income z ∈ {z1, . . . , zm},
liquid assets b ∈ [b, ∞), and illiquid assets a ∈ [0, ∞). Adjusting the illiquid account incurs a
convex cost Φ(at, at−1). The Bellman equation is

Vt(zt, bt−1, at−1) = max
ct,bt,at

u(ct) + βEtVt+1(zt+1, bt, at)

s.t. ct + at + bt = zt + (1 + ra
t )at−1 + (1 + rb

t )bt−1 −Φ(at, at−1)

at ≥ 0, bt ≥ b.

Let the adjustment cost function be specified as

Φ(at, at−1) =
χ1

χ2

∣∣∣∣ at − (1 + ra
t )at−1

(1 + ra
t )at−1 + χ0

∣∣∣∣χ2

[(1 + ra
t )at−1 + χ0] (88)

with χ0, χ1 > 0 and χ2 > 1. Note that Φ(at, at−1) is bounded, differentiable, and convex in the
choice at.43

First-order and envelope conditions. The Bellman equation can be rewritten more compactly as

Vt(zt, bt−1, at−1) = max
bt,at

u
(

zt + (1 + ra
t )at−1 + (1 + rb

t )bt−1 −Φ(at, at−1)− at − bt

)
+ λt(bt − b) + µtat + βEVt+1(zt+1, bt, at)

The first-order conditions with respect to bt and at are

u′(ct) = λt + βE∂bVt+1(zt+1, bt, at), (89)

u′(ct)
[
1 + Φ1(at, at−1)

]
= µt + βE∂aVt+1(zt+1, bt, at), (90)

and the envelope conditions are

∂bVt(zt, bt−1, at−1) = (1 + rb
t )u
′(ct), (91)

∂aVt(zt, bt−1, at−1) =
[
1 + ra

t −Φ2(at, at−1)
]
u′(ct). (92)

It’s convenient to define the post-decision value function Wt(zt, bt, at) ≡ βEtVt+1(zt, bt, at). Note that
the partials of this are just what we have on the right-hand side of the Euler equations (89) and
(90).

Algorithm. The algorithm is a variant of the endogenous gridpoint method of Carroll (2006) that
we developed for this two-asset problem. The key trick is, whenever the household is partially
constrained, to include Lagrange multipliers in the backward iteration. We also exploit the fact

43The functional form (88) is chosen for concreteness; more generally, we could have a mix of terms with different
χ2 > 1.
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that, endogenously, the constraint on the illiquid asset will never be binding unless the constraint
on the liquid asset is also binding (otherwise, a simple variation will improve utility)—and if both
are binding, then the policy is trivial.

Overall, we start from a guess for the (discretized) partials of the value function and iterate
backward until convergence. Throughout, we will use (z′, b′, a′) to refer to tomorrow’s grid and
(z, b, a) today’s grid.

1. Initial guess. Guess Va(z′, b′, a′) and Vb(z′, b′, a′).

2. Common z′ → z. By definition

Wb(z, b′, a′) = βΠVb(z′, b′, a′) (93)

Wa(z, b′, a′) = βΠVa(z′, b′, a′) (94)

3. Unconstrained a′ → a. Assuming that no constraints bind, λt = µt = 0, and (89) and (90)
become

u′(c) = Wb(z, b′, a′), (95)

u′(c)
[
1 + Φ1(a′, a)

]
= Wa(z, b′, a′). (96)

Combine these to get

0 = F(z, b′, a, a′) ≡ Wa(z, b′, a′)
Wb(z, b′, a′)

− 1−Φ1(a′, a) (97)

which characterizes a′(z, b′, a). Use this to map Wb(z, b′, a′) into Wb(z, b′, a) by interpolation,
then compute consumption as

c(z, b′, a) = Wb(z, b′, a)−
1
σ . (98)

4. Unconstrained b′ → b. Now using a′(z, b′, a) and c(z, b′, a) from the previous step, use the
budget constraint to obtain

b(z, b′, a) =
c(z, b′, a) + a′(z, b′, a) + b′ − (1 + ra)a + Φ(a′(z, b′, a), a)− z

1 + rb .

We invert this function via interpolation to get b′(z, b, a). The same interpolation weights can
be used to do a′(z, b′, a)→ a′(z, b, a).

5. Liquidity constrained a′ → a. This branch is analogous to the unconstrained case. Assum-
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ing that the liquidity constraint is binding, λt > 0, and (89) and (90) become

u′(c) = λ + Wb(z, 0, a′),

u′(c)
[
1 + Φ1(a′, a)

]
= Wa(z, 0, a′).

To help with scaling, let us define κ ≡ λ/Wb(z, 0, a′) and rewrite the first equation as

u′(c) = (1 + κ)Wb(z, 0, a′).

Divide and rearrange to get

0 = F(z, κ, a, a′) ≡ 1
1 + κ

Wa(z, 0, a′)
Wb(z, 0, a′)

− 1−Φ1(a′, a). (99)

We solve this for a′(z, κ, a), and compute consumption as

c(z, κ, a) =
[
(1 + κ)Wb(z, κ, a)

]− 1
σ . (100)

6. Liquidity constrained κ → b. Now using a′(z, κ, a) and c(z, κ, a) from the previous step, use
the budget constraint to obtain

b(z, κ, a) =
c(z, κ, a) + a′(z, κ, a) + b− (1 + ra)a + Φ(a′(z, κ, a), a)− z

1 + rb .

We invert this function via interpolation to get κ(z, b, a). The same interpolation weights can
be used to map a′(z, κ, a) into a′(z, b, a). We already know that b′(z, b, a) = b.

7. Update guesses. The final b′(z, b, a) is the element-wise maximum of its unconstrained and
liquidity-constrained counterparts. Replace the unconstrained a′(z, b, a) with constrained
one at the exact same points. Compute consumption from the budget constraint as

c(z, b, a) = z + (1 + ra)a + (1 + rb)b−Φ(a′(z, b, a), a)− a′(z, b, a)− b′(z, b, a). (101)

Finally use the envelope conditions (91) and (92) to update the guesses

Vb(z, b, a) = (1 + rb)c(z, b, a)−σ, (102)

Va(z, b, a) =
[
1 + ra −Φ2

(
a′(z, b, a), a

)]
c(z, b, a)−σ. (103)

Go back to step 2, repeat until convergence.
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Figure B.1: Jacobians J C,r for all three models via the direct and fake news method.
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(b) One-asset HANK model
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(c) Two-asset HANK model
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B.2 Accuracy check for fake news and direct algorithm

Figure B.1 performs a visual accuracy check for each of our three models, by plotting different
columns of the Jacobians J C,r of the model’s aggregate consumption with respect to real interest
rates (in the two-asset model, this is an impulse to the liquid asset rate).

Recall that these columns correspond to the impulse responses of aggregate consumption to a
small increase impulse in real interest rates at various dates. In each of our models we observe the
standard intertemporal substitution pattern in models with incomplete markets—agents in the
aggregate lower their consumption in anticipation of the shock, with the effect building up over
time as agents become progressively more unconstrained, and raise their consumption after the
shock occurs.

This check makes clear that our two algorithms compute exactly the same Jacobians—the fake
news algorithm just does so much faster.

B.3 Solved blocks

The two-asset model introduced via the DAG in figure 4 included a green “production” block.
Production with adjustment costs is well-known to involve the joint determination of investment
and q, and it is natural to solve for these two jointly inside a block. This leads us to introduce a
“solved block” concept, as follows:

Definition 5. A solved block b has an underlying SHADE model with shocks Z̃ , unknowns Ũ ,
outputs Õ, and targets T̃ , and an equilibrium that is locally unique around the steady state, where
we define:

1. The inputs of the solved block to be the shocks of the underlying SHADE model: Ib ≡ Z̃ .

2. The outputs of the solved block to be the unknowns and outputs, minus targets, of the
underlying SHADE model: Ob ≡ Ũ ∪ (Õ \ T̃ ).

3. For each output o ∈ Ob, the function ho({xi}i∈Ib) is the locally unique equilibrium path of o
in the underlying SHADE model given sequences {xi}i∈Z̃ for the exogenous shocks in that
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Figure B.2: The concept of a solved block, applied to the production block of our two-asset HANK model
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model (recalling that Ib = Z̃).

Informally, a solved block is a SHADE model, turned into a block. Figure B.2 illustrates how
this concept works in the case of the production block of our two-asset HANK model. Given the
exogenous inputs Y, w, Z, r, the solved block solves for the endogenous paths for K and Q that
jointly satisfy the q theory equations, so that its outputs are K, Q as well as labor demand N and
marginal costs mc.

B.4 Fast solution for individual impulse responses

In the case where we are only interested in a single impulse response, we only need to do full
forward accumulation (37) for i ∈ U to obtain o ∈ H, which gives HU = JH,U . Then, to deal with
shocks, we do forward accumulation on vectors rather than matrices, writing

Jo,ZdZ = ∑
m∈Ib

J o,mJm,ZdZ (104)

This gives HZdZ = JH,ZdZ. We then solve the linear system HUdU = −HZdZ to obtain dU.
Finally, to obtain equilibrium impulse responses dXo for o /∈ Z ∪ U , we need to calculate

dXo = Jo,ZdZ + Jo,UdU (105)

The first term, Jo,ZdZ, has already been calculated in (104). For the second term, we do forward
accumulation on vectors as in (104), just solving for Jo,UdU rather than Jo,ZdZ.44

44Another approach is to use the Jo,U that we already calculated as part of the initial forward accumulation to obtain
HU = JH,U , and directly apply these to dU. This approach has similar (and low) cost, but is less useful in general
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Table B.1: Computing times for impulse responses.

Krusell-Smith one-asset HANK two-asset HANK

Without directed acyclic graph (DAG) 25.6 ms 99.7 ms 1114.3 ms

With DAG 1.2 ms 17.4 ms 121.7 ms
step 1 (forward accumulate HU) 0.5 ms 7.7 ms 109.8 ms
step 2 (forward accumulate Jo,ZdZ) 0.1 ms 0.1 ms 0.8 ms
step 3 (solve linear system for dU) 0.5 ms 9.1 ms 9.2 ms
step 4 (forward accumulate Jo,U dU, get dXo) 0.1 ms 0.5 ms 1.8 ms

No. of unknowns (without DAG) 3 7 18
No. of unknowns (with DAG) 1 3 3
No. of exogenous shocks 1 3 7

Table B.1, under “with DAG”, shows the time each step of this process takes for our three
models, starting from the Jacobians J for each model block. In general, this process is very cheap,
with the only costly parts being the steps that involve matrices rather than vectors: forward accu-
mulation in step 1 to get HU = JH,U , and second, solving the linear system HUdU = −HZdZ for
dU in step 3.

Since these steps are costly because they involve the shock-independent matrix HU, there are
clear economies of scale from computing the impulse response to multiple shocks. We can calcu-
late HU a single time, and then also calculate H−1

U (or, better, an LU factorization of HU) a single
time, at which point the marginal cost of computing additional impulse responses is very low.
This is the approach we use in section 5 to evaluate the likelihood when redrawing model param-
eters, since this involves finding impulse responses to each shock simultaneously. Taking this idea
to its fullest extent, we can calculate the impulse responses to all shocks simultaneously, which is
the “G matrix” approach in section 4.2.

B.5 Efficient second moment and likelihood calculation

Fast Fourier transform (FFT) to compute autocovariances. To start, consider any sequences
a0, . . . , aT−1 and b0, . . . , bT−1 of real scalars. If we define the sequences

(â0, . . . , â2T−2) = (a0, . . . , aT−1, 0, . . . , 0)

(b̂0, . . . , b̂2T−2) = (b0, . . . , bT−1, 0, . . . , 0)

to be a and b each padded by T − 1 zeros, then

a0bu + a1bu+1 + . . . + aT−1−ubT−1 =
2T−2

∑
`=0

â`b̂u+` (106)

because it does give o that were not necessary in calculating HU.
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where b̂u+` ≡ b̂u+`−(2T−2) when u + ` ≥ 2T − 2. It then follows from the standard properties of
the discrete Fourier transform F that for any u ∈ 0, . . . , T − 1

2T−2

∑
`=0

â`b̂u+` =
(
F−1

(
F (â)∗ · F (b̂)

))
s

(107)

where ∗ denotes complex conjugation.45

Since the discrete Fourier transform is a linear operator, we can extend this method to apply
to the matrices mÕ,Z

0 , . . . , mÕ,Z
T−1 in (43), where we interpret F as applying element-by-element to a

sequence of matrices. Letting m̂Õ,Z
0 , . . . , m̂Õ,Z

2T−2 denote the sequence padded with zeros like above,
we have from (106) and (107), substituting u = t′ − t, that

[mÕ,Z
0 ][mÕ,Z

t′−t ]
′ + . . . + [mÕ,Z

T−1−(t′−t)][m
Õ,Z
T−1]

′ =
(
F−1

(
F (Φ̂)∗F (Φ̂′)

))
t′−t

(108)

where the transpose is applied individually to each matrix in the sequence, and F (Φ̂)∗F (Φ̂′) is
the product of each pair of matrices in the frequency-by-frequency sequence.

We simply apply (108), using the fast Fourier transform for F , to calculate the covariances
in (43) for each t′ − t. Since the two key operations—the FFT and matrix multiplication—have
extremely efficient implementations widely available, this can be done very quickly, taking only a
few milliseconds in table 7 for the examples in this paper. It is far faster than a naive calculation
of the sum in (43).46

Calculating the log-likelihood. To go from Cov(dX̃t, dX̃t′) for each t′ − t to the log-likelihood
L in (45), there are two steps. First, we need to obtain Cov(dX̃obs

t , dX̃obs
t′ ), which we can do

easily for each t′ − t by directly applying (44). Then, given the matrix V comprised of blocks
Cov(dX̃obs

t , dX̃obs
t′ ), we need to evaluate the log-likelihood (45). The key steps here are the calcula-

tion of the log-determinant log(det(V)) and the quadratic form w′V−1w.

Standard approach: Cholesky. The simplest approach is the standard one: to explicitly form the
matrix V and then to take a Cholesky decomposition V = LL′ using standard routines.47 The log-
determinant is then just twice the sum of the log entries of L. We can also write [dX̃obs]′V−1[dX̃obs] =

(L−1dX̃obs)′(L−1dX̃obs), where L−1dX̃obs is quick to evaluate. The bottleneck is that the cost of the
Cholesky decomposition grows asymptotically with the cube of the matrix dimension nobsTobs,
which can become costly if the number Tobs of time periods in the series or the number nobs of
variables observed in each period is high. But in practice, for the estimation exercises in table 7,
this is not a bottleneck, except perhaps in the two-asset HANK case where we estimate the shock

45The padding with zeros to create â and b̂ is necessary so that the wraparound b̂s+` terms for large s + ` do not affect
the sum.

46Since the inputs are real, the full transform is redundant and we can deal only with the first T entries; the final T− 2
are complex conjugates of entries 1 through T− 1. This economizes on the time forF and also for matrix multiplication.

47This is a longstanding approach in time series to explicitly evaluating the log-likelihood, first applied in the DSGE
literature (to our knowledge) by Mankiw and Reis (2007).
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process underlying 7 observable series, and calculating L takes (dominated by the Cholesky) 7 ms
out of 11 ms total—i.e. a bottleneck only because other parts of the computation are so fast.

Potential alternatives for large cases. The Cholesky decomposition only requires symmetry, but
V has additional structure: it is also block Toeplitz, since the blocks corresponding to each t′ − t are
the same. An algorithm exploiting this structure to obtain a block Cholesky decomposition, de-
scending from Levinson-Durbin recursion, is described in detail in Sowell (1989), and a form of
it is applied to calculate the likelihood by Meyer-Gohde (2010). It has complexity O(T2

obsn
3
obs),

rather than O(T3
obsn

3
obs) for the standard Cholesky. We have found, however, that the overhead

in implementing this algorithm, versus the extremely efficient machine-level implementations of
Cholesky, means that it only becomes superior in practice when Tobs is very high (over 400 peri-
ods).

Several other options remain. One is to use the Whittle (1953) approximation to the likelihood
function. We did not use this, since we found that the difference between the approximation and
the exact likelihood function was sizable in some instances. This may not matter in many appli-
cations, however, and the Whittle likelihood has an extensive history in time series estimation.
Another option is to use iterative methods, at least for calculating the quadratic form w′V−1

w w;
since Vw is Toeplitz, it is possible to calculate a matrix-vector product using Vw very quickly using
the FFT. We have obtained early promising results using the preconditioned conjugate gradient
method and a circulant preconditioner—see, e.g., Chan and Olkin (1994).

C Proofs

C.1 Proof of proposition 1

Consider the term in entry t, s of the fake news matrix for t, s > 0:

Ft,s = P ′t−1Ds = y′ss(Λ
′
ss)

t−1(Λv(vv)
s−1vx)

′Dss (109)

Since Λ is always a row-stochastic Markov matrix, the entries of vector (Λv(vv)s−1vx)′Dss must
always sum to zero (a perturbation to the transition matrix still conserves mass). Multiplying by
Λ′ss, which is column-stochastic, preserves this property.

If we let B = B′ = I − 11′/ng be the demeaning matrix, which does nothing to vectors whose
entries sum to zero, it follows that (109) equals

y′ss(B′Λ′ss)
t−1(Λv(vv)

s−1vx)
′Dss (110)

Now, Ds = (Λv(vv)s−1vx)′Dss converges uniformly to zero as s → ∞ at an exponential rate
bounded by the largest magnitude eigenvalue of vv, which the proposition assumes is inside the
unit circle. Similarly, P̃t ≡ (ΛssB)t−1yss converges to zero at a rate bounded by the largest eigen-
value of Λss that is not the eigenvalue associated with the right eigenvector 1, which is annihilated
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by the demeaning matrix B. This eigenvalue is strictly inside the unit circle precisely when there
is a unique ergodic distribution, like the proposition assumes, and hence P̃t converges uniformly
to zero as t→ ∞ at an exponential rate bounded by this eigenvalue.

Since both Ds and P̃t converge to zero as s → ∞ and t → ∞ bounded by an exponential rate
(less than 1), the product Ft,s = P ′t−1Ds converges to zero as s + t → ∞ at an exponential rate
bounded by the maximum of these two rates.

C.2 Proof of proposition 2

Here, we derive the rules for multiplication of the operator Qi,m =

SiZm i > 0

ZmSi i < 0
, where Si is

the shift operator on sequences by i and Zm zeros out the first m elements of sequences, by doing
case-by-case analysis on the product

Qi,mQj,n

In our derivation, we will exploit the following fact about multiplication of Si:

SiSj =


Si+jZ−j i > 0, j < 0, i + j > 0

ZiSi+j i > 0, j < 0, i + j < 0

Si+j otherwise

and the rules S−iZj = Zmax(j−i,0)S−i and ZjSi = SiZmax(j−i,0) for multiplication of S and Z.

Case 1: positive i, positive j. Here we have

Qi,mQj,n = SiZmSjZn

= SiSjZmax(m−j,0)Zn

= Si+jZmax(m−j,n)

= Qi+j,max(m−j,n) (111)

Case 2: positive i, negative j. Here we have

Qi,mQj,n = SiZmZnSj

= SiZmax(m,n)Sj

If i + j > 0, then we write
Zmax(m,n)Sj = SjZmax(m,n)−j
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and then

SiZmax(m,n)Sj = SiSjZmax(m,n)−j

= Si+jZ−jZmax(m,n)−j

= Si+jZmax(m,n)−j

= Qi+j,max(m,n)−j

If i + j < 0, then we write
SiZmax(m,n) = Zmax(m,n)+iSi

and then

SiZmax(m,n)Sj = Zmax(m,n)+iSiSj

= Zmax(m,n)+iZiSi+j

= Zmax(m,n)+iSi+j

= Qi+j,max(m,n)+i

Both these cases boil down to the simpler form

Qi,mQj,n = Qi+j,max(m,n)+min(i,−j) (112)

Case 3: negative i, positive j. Then we have

Qi,mQj,n = ZmSiSjZn

= ZmSi+jZn

If i + j > 0, then we write ZmSi+j = Si+jZmax(m−i−j,0) and get

Qi,mQj,n = Qi+j,max(m−i−j,n) (113)

If i + j < 0, then we write Si+jZn = Zmax(n+i+j,0)Si+j and get

Qi,mQj,n = Qi+j,max(n+i+j,m) (114)

Case 4: negative i, negative j. Then we have

Qi,mQj,n = ZmSiZnSj

= ZmZmax(n+i,0)SiSj

= Zmax(m,n+i)Si+j

= Qi+j,max(m,n+i) (115)
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Combined, (111)-(115) give (39) and (40) in proposition 2.

C.3 Equivalence between SHADE impulse responses and MA (∞)

Throughout, use a filtration {Ft} on a probability space (Ω,A, P). We denote all stochastic vari-
ables and processes with a tilde. We begin by defining stochastic heterogeneous-agent blocks.

Definition 6. A stochastic heterogeneous-agent block maps stochastic processes X̃i, for i = 1, . . . , nx,
to stochastic processes Ỹo, for o = 1, . . . , ny. Stacking the X̃is into a vector X̃, and the Ỹos into a
vector Ỹ, we represent this map with a function

Ỹ = h(X̃) (116)

The time-t output of this function can be written as

Ỹt = y(Etṽt+1, X̃t)
′D̃t

where {D̃t, ṽt} satisfy

D̃t+1 = Λ(Etṽt+1, X̃t)
′D̃t

ṽt = v(Etṽt+1, X̃t)

Stochastic heterogeneous-agent blocks are analogous to deterministic blocks, except that all
sequences are replaced by stochastic processes, and functions are defined over expected values
of those processes. Note that D̃t+1 is predetermined as it only depends on variables that are
measurable at time t. We also define stochastic simple blocks.

Definition 7. A stochastic simple block is a function between stochastic processes ỹ = h(x̃) such that
the time-t realization ỹt is a time-invariant function h̃ of x̃ in periods around t,

ỹt = h̃(x̃t−k, . . . , x̃t, Etx̃t+1, . . . , Etx̃t+l), (117)

where k, l ∈N.

We are then ready to define a stochastic SHADE model, exactly as before.

Definition 8. A stochastic SHADE model is a defined like a regular SHADE model, except that
blocks are either stochastic heterogeneous-agent blocks or stochastic simple blocks. A steady state
is defined as before (in particular, it is deterministic).

Finally, we link stochastic SHADE models and deterministic SHADE models.

Definition 9. The sequence-space-equivalent SHADE model of a stochastic SHADE model is a SHADE
model whose blocks have the same inputs and outputs; each of whose simple blocks is defined by
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the same function h̃ (e.g. as in definition 7); each of whose stochastic blocks is defined by the same
y, Λ, v (as in definition 6).

We are now ready to state and prove the main result of this section: to first order, equilibria of
stochastic SHADE models and equilibria of deterministic SHADE models are equivalent.

Proposition 4. Fix a (deterministic) steady state {x∗i, i ∈ N} of a stochastic SHADE model. Let {x∗i +
εỹi, i ∈ N} be an equilibrium of the stochastic SHADE model. Define

yi
t = Esỹi

s+t −Es−1ỹi
s+t (118)

Then, {x∗i + εyi, i ∈ N}, satisfies the equilibrium conditions of the sequence-space-equivalent SHADE
model to first order in ε, for any s ≥ 0.

Proof. We prove the result that if

x∗i + εỹi
t = h̃(x∗ + εỹt−k, . . . , x∗ + εỹt, x∗ + εEtỹt+1, . . . , x∗ + εEtỹt+l) (119)

then, to first order in ε it holds that

yi
t = h̃(x∗ + εyt−k, . . . , x∗ + εyt, x∗ + εyt+1, . . . , x∗ + εyt+l) (120)

where yi
t is defined as in (118). Denote partial derivatives of h̃ by h̃d ≡ ∂h̃

∂xd
(x∗, . . . , x∗) for d =

−k, . . . , l. A Taylor expansion of (119) in ε then reads

ỹi
t =

l

∑
d=−k

h̃dỹt+d +O(ε) (121)

Evaluating (119) at time t + s and applying the expectations operator Es we find

Esỹi
t+s =

l

∑
d=−k

h̃dEsỹt+s+d +O(ε) (122)

Subtracting Es−1 applied to (121) from (122) we obtain

yi
t =

l

∑
d=−k

h̃dyt+d +O(ε)

implying that (120) holds to first order in ε.
Applying this logic to any stochastic simple block, as well as to any stochastic heterogeneous-

agent block, this proves the proposition.

The equivalence result in proposition 4 implies that if ỹt has MA(∞) representation ỹt =

∑∞
s=0 msεt−s, with {εt} iid standard normal, and is part of an equilibrium of a stochastic SHADE
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model, then its MA coefficients

mtεs = Esỹi
s+t −Es−1ỹi

s+t

are part of an equilibrium of the sequence-space-equivalent (deterministic) SHADE model.

C.4 Discretized SHADE models

We next consider discretized SHADE models. We define them in two steps, beginning with dis-
cretized heterogeneous-agent blocks.

Definition 10. A discretized heterogeneous-agent block maps inputs Xi, for i = 1, . . . , nx, to outputs
Yo, for o = 1, . . . , ny. Stacking the Xis into a vector X, and the Yos into a vector Y, we represent this
map with the function

Y = h(X) (123)

The time-t output of this function takes the form (16), where vt+1 is determined in (14) and Dt in
(15).

This leads us to the following definition of discretized SHADE models.

Definition 11. A discretized SHADE model is a SHADE model, except that its blocks are either
simple blocks or discretized heterogeneous-agent blocks.

We also slightly generalize simple blocks.

Definition 12. An extended simple block maps input sequences Xi, for i = 1, . . . , nx to output se-
quences Yo for o = 1, . . . , ny. Stacking the Xi

t’s into a vector Xt, and the Yo
t ’s into a vector Yt,

there must exist k, l ∈ N ∪ {∞} and a time-invariant function h such that Yt is only a function of
neighboring Xt’s, that is,

Yt = h(Xt−k, . . . , Xt+l)

Crucially, an extended simple block can depend on infinitely many leads or lags.

C.5 Proof of lemma 1

We first prove an intermediate result.

Lemma 2. The Jacobians ∂hi

∂x` of a simple block are asymptotically time invariant.

Proof. Denote by h̃d ≡ ∂h̃
∂xd

(x∗, . . . , x∗), d = −k, . . . , l the partial derivatives of the function h̃ of the
simple block (as in proposition 4). Then,

∂hs+d

∂xs
= h̃d

which hence trivially converges as s→ ∞. Each h̃d is a ny × nx block matrix.
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This means that the Jacobians of both heterogeneous-agent blocks and simple blocks are asymp-
totically time invariant. Since the entire model’s Jacobians are built up from individual blocks’
Jacobians as in (37), the former Jacobians must be asymptotically time invariant, too, in light of
the following simple result.

Lemma 3. If two block matrices A, B are asymptotically time invariant, with As+j,s → Aj ∈ Rn1×n2 and
Bs+j,s → Bj ∈ Rn3×n4 , then so are A + B (if n1 = n3 and n2 = n4) and A · B (if n2 = n3).

Proof. A + B is obviously asymptotically time invariant. For the matrix product, we have

(A · B)s+j,s =
∞

∑
t=−s

As+j,s+tBs+t,s

For each s, j, this is a well-defined infinite sum as As+j,s+t → 0 and Bs+t,s → 0 for t → ∞, expo-
nentially fast. Since As+j,s+t → Aj−t and Bs+t,s → Bt uniformly in t, it follows that

(A · B)s+j,s →
∞

∑
t=−∞

Aj−tBt

Note that this means the asymptotic shape of A · B around the diagonal is determined by the
convolution of A and B.

C.6 Proof of proposition 3

Fix a discretized SHADE model. First, note that every heterogeneous-agent block can be split up
into three extended simple blocks (definition 12): the first one computes vt as in (14), then Dt as
in (15), and finally yt as in (16). We hence arrive at a version of the SHADE model in which all
heterogeneous-agent blocks are replaced by three extended simple blocks.

Then, without loss, denote by U = {1, . . . , U} the set of unknowns and byO = {U + 1, . . . , U +

O} the set of outputs, such that the order of O corresponds to the order in which outputs can be
computed without any cyclicalities. Finally, denote the set of targets by T = {τ1, . . . , τU}. We can
write the first-order change in each output o in response to a shock as

dxo
t =

o−1

∑
i=1

t

∑
j=−∞

ao,i
j dxi

t−j + dzo
t (124)

where dzo
t is a linear combination of past and future exogenous shocks whose form is irrelevant

for determinacy. ao,i
j are real numbers, for numbers o ∈ O and i ∈ U ∪ O with i < o and j ≤ t.

They correspond to the partial derivatives of individual blocks. For instance, if o is determined by
a simple block with function h̃, ao,i

j = ∂h̃o

∂xi
−j
(x−k, . . . , xl), with notation as in lemma 2.

Stacking (124), this yields
t

∑
j=−∞

AjdXt−j = dZt (125)
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where

Aj ≡



aU+1,1
j · · · aU+1,U

j −1

aU+2,1
j · · · · · · aU+2,U+1

j −1
...

. . . . . .

aU+O,1
j · · · · · · aU+O,U+O−1

j −1

δj0δτ1,1 · · · · · · δj0δτ1,U+O
...

...
δj0δτU ,1 · · · · · · δj0δτU ,U+O


and

dXt ≡



dx1
t

...

...
dxU+O

t


, dZt =



dzU+1
t
...

dzU+O
t

0
...
0


Here, δmn is the Kronecker delta, equal to 1 if m = n and 0 otherwise. The top half of Aj consists
of the ao,i

j in (124) as well as a −1 at the position of the output dxo
t that is determined in each row.

The bottom half of Aj consists of Kronecker deltas which in each row τk equal 1 in column i = τk.
Thus, (125) describes the first-order behavior of the model in response to an exogenous shock. We
define A(λ) ≡ ∑∞

j=−∞ Ajeijλ and ao,i(λ) ≡ ∑∞
j=−∞ ao,i

j (λ)eijλ, so that

A(λ) ≡



aU+1,1(λ) · · · aU+1,U(λ) −1
aU+2,1(λ) · · · · · · aU+2,U+1(λ) −1

...
. . . . . .

aU+O,1(λ) · · · · · · aU+O,U+O−1(λ) −1
δτ1,1 · · · · · · δτ1,U+O

...
...

δτU ,1 · · · · · · δτU ,U+O


(126)

We can apply the Onatski (2006) determinacy criterion to (125). It implies that the model is
determinate iff the winding number of det A(λ) is equal to zero. What is det A(λ)? The following
lemma characterizes the determinant.
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Lemma 4. Let U ∈N, O ∈N0 and let τ1, . . . , τU be U elements of {1, . . . , U + O}. Further, let

A ≡



aU+1,1 · · · aU+1,U −1
aU+2,1 · · · · · · aU+2,U+1 −1

...
. . . . . .

aU+O,1 · · · · · · aU+O,U+O−1 −1
δτ1,1 · · · · · · δτ1,U+O

...
...

δτU ,1 · · · · · · δτU ,U+O


∈ R(U+O)×(U+O) (127)

Then,
det A = (−1)O(U−1) det J

where J = (Jτk ,u)1≤k,u≤U, ∈ RU×U is defined iteratively as Ju,v = δuv for u, v ∈ {1, . . . , U} and for all
o ∈ {U + 1, . . . , U + O} as

Jo,u =
o−1

∑
i=1

ao,i Ji,u (128)

To apply lemma 4 to det A(λ), define the matrix-valued function J(λ) ≡ (J(λ)τk ,u)1≤k,u≤U ∈
RU×U , λ ∈ [0, 2π) recursively as J(λ)u,v = δuv for u, v ∈ {1, . . . , U}

J(λ)o,u =
o−1

∑
i=1

ao,i(λ)Ji,u(λ) (129)

Then, lemma 4 implies that
det A(λ) = (−1)O(U−1) det J(λ)

where the constant (−1)O(U−1) is irrelevant for the winding number. What is J(λ)? We conclude
our proof by showing that J(λ) is indeed equal toH(λ) = ∑∞

j=−∞Hjeijλ.
To show this, we define the mapping F (M) on the linear space of asymptotically translation

invariant matrices, such that each image F (M) is a function itself from λ ∈ [0, 2π) to F (M)(λ) =

∑∞
j=−∞ lims→∞ Ms+j,seijλ. F preserves matrix multiplication, that is,

F (M ·M′) = F (M) · F (M′) (130)

for two asymptotically time invariant matrices M, M′. Furthermore,

F
(

∂ho

∂xi

)
(λ) = ao,i(λ) (131)

This implies that, by iteratively applying (130) and (131) to (37),

F (Jo,u)(λ) = J(λ)o,u
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and therefore

J(λ) = (J(λ)τk ,u)1≤k,u≤U =
∞

∑
j=−∞

(
lim
s→∞

Jτk ,u
s+j,s

)
1≤k,u≤U

eijλ = H(λ)

This concludes our proof: the model is determinate if and only if the winding number of
det A(λ) = detH(λ) is equal to zero.

Proof of Lemma 4. We prove the result by induction over O. For simplicity, we call O the “number
of outputs” in A. Begin with O = 0. In that case,

A =


δτ1,1 · · · δτ1,U

...
...

δτU ,1 · · · δτU ,U

 = J

and therefore det A = det J, for any U ∈N. Assume now the result holds for matrices of the form
(127) with a given number of outputs O− 1 (and for any U ∈N). We wish to prove it Distinguish
two cases.

Case I: U + O 6∈ {τ1, . . . , τU}. In that case, applying Laplace’s formula to the last column of A,
we find

det A = (−1)U−1 det A−O,−(U+O)

where A−O,−(U+O) is matrix A without the Oth row and (U + O)th column. Since the submatrix
A−O,−(U+O) is of the same shape as in (127), just with O− 1 outputs, we can apply the induction
hypothesis to arrive at det A = (−1)O(U−1) det J.

Case II: U + O ∈ {τ1, . . . , τU}. Without loss (by reordering the τ’s) assume τU = U + O. As
before, let J be defined as in (128). In that case, applying Laplace’s formula to the last row of A,
and reordering the rows, we find

det A = (−1)U−1 det



aU+1,1 · · · aU+1,U −1
...

. . . . . .

aU+O−1,1 · · · · · · aU+O−1,U+O−2 −1
δτ1,1 · · · · · · δτ1,U+O−1

...
...

δτU−1,1 · · · · · · δτU−1,U+O−1

aU+O,1 · · · · · · aU+O,U+O−1


Observe that, if the last row were different—with just zeros except for a single 1 in some column j
(call this matrix A(j))—the induction hypothesis would apply so that the determinant is equal to
det J(j) where the last row in J(j) is given by ∑O+U−1

i=1 δij Ji,u for u = 1, . . . , U. Using the linearity of
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the determinant in the last row, we find

det A = (−1)U−1
U+O−1

∑
j=1

aU+O,j det A(j) =
U+O−1

∑
j=1

aU+O,j det J(j)

where we note that det A(j) = (−1)(O−1)(U−1) det J(j) as A(j) has U unknowns and O− 1 outputs
and (−1)U−1(−1)(O−1)(U−1) = (−1)O(U−1). Again, by the linearity of the determinant in the last
row

U+O−1

∑
j=1

aU+O,j det J(j) = det J

since
U+O−1

∑
j=1

aU+O,j
O+U−1

∑
i=1

δij Ji,u = JU+O,u

This proves that det A = (−1)O(U−1) det J and therefore the induction step.
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