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Abstract

We provide a simple framework connecting the distribution of excess savings across house-
holds to the dynamics of aggregate demand. Deficit-financed fiscal transfers generate excess
savings. The poorest households with the highest MPCs spend down their excess savings the
fastest, increasing other households’ incomes and their excess savings. This leads to a long-
lasting increase in aggregate demand until, ultimately, excess savings have “trickled up” to the
richest savers with the lowest MPCs, raising wealth inequality.

In the wake of the Covid pandemic, households accumulated a very large stock of “excess
savings”, which they have only recently begun to deplete. Figure 1(a) shows that the U.S. personal
savings rate first rose very rapidly in 2020, more than doubling relative to its long-term average,
then started falling below that average in late 2021. Figure 1(b) shows an estimate of the resulting
stock of excess savings by the Federal Reserve Board (Aditya Aladangady, David Cho, Laura
Feiveson and Eugenio Pinto 2022). This stock has only modestly fallen from its peak. In mid-2022,
it still stood at $1.7trn, or 6.7% of GDP.

Because excess savings and their distribution across the population intuitively matter for ag-
gregate demand, economists have paid a considerable amount of attention to estimating both.
In this paper, we provide a tractable Heterogeneous Agent New Keynesian model that explicitly
maps the distribution of excess savings to the path of output, and that explains the process by
which their effect dissipates. We use this framework to estimate the likely contribution of excess
savings to aggregate spending in the coming years under various assumptions about the marginal
propensities to consume (MPCs) of agents holding the savings and scenarios for monetary policy.

Our framework recognizes that one person’s spending is another person’s income. As we
show, taking this fact into account implies that excess savings from debt-financed transfers have
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Figure 1: U.S. personal savings rate and excess savings

much longer-lasting effects than a naive calculation would suggest. In a closed economy, unless
the government pays down the debt used to finance the transfers, excess savings do not go away as
households spend them down. Instead, the effect of excess savings on aggregate demand slowly
dissipates as they “trickle up” the wealth distribution to agents with lower MPCs. Tight monetary
policy speeds up this process, but this effect is likely to be quantitatively modest.

1 Model

We consider a continuous time model with N types of households, i = 1, . . . N. Agents with
higher i have lower instantaneous marginal propensities to consume mi, with agent N having an
MPC of zero, m1 > m2 > · · · > mN = 0. Motivated by the empirical evidence on the negative
correlation between MPCs and wealth, we think of agents with higher i as being initially richer,
with agent N being the richest. While this is a useful interpretation, it is not strictly necessary:
what is important is the distribution of mi across types i.

At t = 0, the government distributes a transfer ai0 to households, issuing debt B = ∑N
i=1 ai0 to

finance the transfer, and maintaining a constant debt level thereafter. We first consider an “easy
monetary policy” scenario in which the central bank responds by holding constant the real interest
rate at its steady state level of zero, r = 0. This implies, in particular, that the additional debt
requires no change in taxes.

Each type’s behavior is described by a utility function over consumption and assets. Agents
understand the central bank’s announcements of future real interest rates rt (here r = 0), but they
assume that future aggregate income Yt remains permanently at its steady state level.1 Agent type
i earns a fixed proportion θi ∈ (0, 1) of total income Yt.

We linearize this model around the steady state where each agent type owns a certain stock
of assets (with higher-type agents plausibly holding more wealth). This delivers the following

1In the words of Emmanuel Farhi and Iván Werning (2019), agents have level-k thinking with k = 1. This makes the
model particularly tractable. We later consider the case with rational expectations.
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equations:

cit = miait; ȧit = θiYt − cit; Yt =
N

∑
i=1

cit (1)

where Yt is aggregate demand and income, cit is type i′s consumption, ait his asset holdings (all
relative to their steady state level), and mi ∈ [0, ∞) his instantaneous MPC out of liquid assets.
The θ’s, which satisfy ∑N

i=1 θi = 1, are the income shares across the types. The equations in (1) give
a tractable version of the intertemporal Keynesian cross (Adrien Auclert, Matthew Rognlie and
Ludwig Straub 2018).

An unconventional feature of our model is that it assumes the presence of agents with zero
MPC. One can interpret these type-N agents as standard permanent-income agents, in the limit
where their discount rate goes to zero, but alternative interpretations are possible. First, they
could stand in for the rest of the world. Second, they could represent the government receiving a
fraction of aggregate income via taxation, and using it to pay down the debt. Finally, they could
represent zero MPC financial accounts, such as retained earnings saved by firms or pension funds.

One natural objection to the model in (1) is that it assumes that monetary policy maintains an
easy stance of r = 0 in the face of high demand. To address this, we extend our model by assuming
that monetary policy tightens as it sees higher demand, reacting with a rule rt = ϕYt.2 Since higher
demand will naturally be associated with higher inflation, an alternative interpretation of this rule
is that monetary policy tightens in reaction to the inflation generated by excess savings. Online
appendix A derives the equations characterizing the model in this case.

Another objection to the model in (1) is that it relies on imperfect foresight by agents. On-
line appendix A also derives the equations characterizing the model when agents have rational
expectations about interest rates rt as well as income Yt.

Partial equilibrium analysis. A naive partial equilibrium approach to calculating the effect of
excess savings on spending would be to ignore the endogeneity of output, instead assuming that
Yt remains at its normalized steady state level of 0 forever. Solving out for (1) in this case, we find
that aggregate demand is given by:

Ct =
N−1

∑
i=1

mie−mitai0 (2)

Equation (2) delivers a simple way to map a distribution of MPCs and excess savings by type into
an effect on aggregate spending: take type i’s initial stock of savings, and apply to it an exponen-
tial distribution for spending with mean 1/mi.3 A simple back-of-the envelope calculation using

2To neutralize the income effects of changing interest rates, in this extension, we assume that all agents types start
with a steady state level of wealth of 0. We think of this as proxying for the presence of long duration assets, which
hedge agents against interest rate risk.

3This functional form characterizes the intertemporal marginal propensities to consume of agents with assets in the
utility; once multiple types of such agents are mixed together, the model’s aggregate dynamics are similar to those of
alternative heterogeneous-agent models. See Auclert, Rognlie and Straub (2018).
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this equation suggests that, for the United States, the remaining excess savings might only affect
aggregate demand for a few quarters (see table 1).

This approach, however, fails to recognize that one agent’s spending is another agent’s income.
Ignoring this fact has important consequences: if agents simply spent down their excess savings
without raising anyone else’s income, then no one would be purchasing the assets they sold in
the process. But this is inconsistent with the government keeping its debt constant. As we show
next, recognizing this fact implies a much greater persistence of excess savings and output than
equation (2) suggests.

2 The trickling-up effect

We now explicitly solve the dynamical system in (1). We begin with a simple observation about
the steady state of this system.

Proposition 1 (Long-run trickling up). In the long run, type N owns all the debt: limt→∞ aNt = B.

This result follows immediately from the fact that type N has mN = 0, so that its asset dynamics
are given by ȧNt = θN

(
∑N−1

i=1 miait

)
. Hence, as long as other agents have excess savings, they

spend them down, increasing the income and therefore the savings of the richest type. Since the
government keeps its debt position constant, ∑N

i=1 ait = B at all times, in the long run all types have
zero assets, except for type N, which owns all of B. At this point, excess savings have “trickled
up” to agents with the highest i. Given our interpretation of type N as being initially the richest
agent, we see that any initial transfer, no matter how targeted it is to the poor, eventually ends up
raising wealth inequality.

Proposition 2 (Trickling-up dynamics). Assume that miai0/θi decreases in i. Then the distribution of
assets across types i at any later date t′ first-order stochastically dominates the distribution at any earlier
date t < t′: ∑n

i=1 ait′ < ∑n
i=1 ait for all n < N.

This result, proved in online appendix B, shows the exact sense in which excess savings trickle
up: no matter where we look in the distribution of excess savings, as time passes, the wealth held
by all lower types is falling, and the wealth held by all higher types is rising. The only necessary
condition is that excess savings initially cause a larger percentage increase in spending among
poorer agents, which is easily satisfied since they have higher MPCs.

Proposition 3 (Slow dissipation). In the long-run, Yt ∼ e−λt: aggregate demand and excess savings
dissipate at rate λ, where λ < mN−1. Hence, excess savings have a strictly longer-lasting effect on demand
than the naive partial equilibrium calculation in (2) would suggest.

In the partial equilibrium calculation from equation (2), spending eventually becomes domi-
nated by type N − 1 agents, decaying at rate mN−1. Proposition 3 shows that general equilibrium
spending dissipates strictly more slowly than this. Intuitively, this is because the spending from
any type sustains income from any other type as the wealth of all agents goes to zero.
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Figure 2: The trickling up effect.

Figure 2 illustrates the adjustment process characterized by Propositions 1–3. Dark arrows
flow from agent types to aggregate demand Yt via their spending (mi), with lower types spending
down their assets faster. Gray arrows flow from aggregate demand to the income of these agents,
and are more equally distributed across the population (θi), with type-N agents receiving a signif-
icant share. Running this system forward, we see that excess savings slowly trickle up the wealth
distribution, until type N agents own all of the assets.

Three-type example We now specialize the model to a case with N = 3 types. This case is
simple to analyze graphically, and provides additional analytical insights into the trickling up
of excess savings. We think of type 1 as representing the poor and the middle class; type 2 as
representing the rich; and type 3 as representing the super-rich. Manipulating the equations in
(1), we see that the dynamics of excess savings for the first two types satisfy:(

ȧ1

ȧ2

)
=

(
−m1 (1 − θ1) θ1m2

θ2m1 −m2 (1 − θ2)

)(
a1

a2

)
Once we have solved for (a1t, a2t), it is easy to back out a3t = B − (a1t + a2t).

Figure 3 visualizes this dynamical system using a phase diagram for (a1, a2). The locus for
ȧ1 = 0 is given by a2 = θ2+θ3

1−(θ2+θ3)
m1
m2

a1; to the right of this locus, the assets of type 1 agents decline.

The locus for ȧ2 = 0 is flatter, at a2 = θ2
1−θ2

m1
m2

a1; to the right of this locus, type 2 assets increase.
The dynamics of the wealth distribution are then given by the arrows on the graph, splitting the
positive quadrant into three regions: two regions close to the axes in which agents’ assets move
in opposite directions, and a middle cone in which both agents’ assets decline together. In the
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Figure 3: Phase diagram for N = 3 case

scenario where initial a2 is low relative to a1, type 2 agents initially increase their assets as the
spending by type 1 agents initially boosts their incomes and savings, before reaching a second
phase in which both types’ assets decline as the super-rich accumulate. We formalize this situation
in the following proposition:

Proposition 4. Assume that type-1 agents initially own a sufficiently large share of assets, θ2m1a10 >

(1 − θ2)m2a20. Then, type 2 agents first accumulate assets before spending them down.

The hump-shaped response of savings of type 2 agents is a simple manifestation of the trickling
up effect from proposition 2.

3 Application to the U.S.

We use our model to quantify the likely impact of the stock of excess savings estimated by Al-
adangady et al. (2022) on aggregate demand and its likely duration. We follow the three type
classification outlined in section 2. We set the time units so that t = 1 corresponds to a quarter.
The parameters of the model are θi, mi, and ai0 for each i.

We interpret types as follows: type 1 is the bottom 80% of the U.S. wealth distribution, type 2
is the next 19%, and type 3 is the top 1%. In the 2019 Survey of Consumer Finances, the bottom
80% of the U.S. wealth distribution earns 47% of income, the next 19% earns 38%, and the top
1% earns 15%. We assume that marginal income is distributed like average income; this implies
our θi’s. Next, we assume a realistically high quarterly MPCs for the middle class and the rich,
mpc1 = 0.4 and mpc2 = 0.2. We then convert these numbers to instantaneous MPCs using the
formula 1 − e−mi = mpci. Finally, we assume that the excess savings have only started to trickle
up the wealth distribution, with the middle class owning 60% and the rich owning 30% of the
stock of excess savings. Finally, we take the total stock to be B = 6.7% of GDP, as estimated by
these authors. While the exact numbers entering our calculations are highly uncertain, table 1
shows that our results are robust to reasonable alternative calibrations.
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Figure 4: Dynamic evolution of the distribution of excess savings and aggregate demand

Duration of output and excess savings

Scenario Output Y Middle-class a1 Rich a2

Partial equilibrium 3 2 4
Benchmark 20 19 22
Lower MPCs (mpc1 = 0.3, mpc2 = 0.1) 38 34 43
More excess savings to rich (a10 = a20 = 0.45B) 21 20 22
More earnings to rich (θ1 = 0.3, θ2 = 0.55) 23 19 26
Rational expectations 8 6 10
Tight monetary policy (ϕ = 1.5) 8 7 11

Note: the time unit is a quarter. Given that r = 0, the duration of a variable Xt is defined as
∫

tXtdt/
∫

Xtdt. Our
benchmark calibration has mpc1 = 0.4, mpc2 = 0.2, with mi = − log(1 − mpci); income shares θ1 = 0.47, θ2 = 0.38,
θ3 = 0.15; and initial assets a10 = 0.6 · B, a20 = 0.3 · B, with B = 6.7% of GDP. For the monetary response scenario, we
assume that agents have an elasticity of intertemporal substitution of 1/2.

Table 1: Duration of output and excess savings by type under alternative scenarios (in quarters)
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Figure 4 reports the evolution of the distribution of savings across types in three alternative
scenarios. The top left panel shows the outcome of a partial equilibrium analysis: all types except
the first quickly run down their excess savings, and after a few years only 10% of the U.S. debt is
held by super-rich U.S. residents. The top right panels shows our general equilibrium benchmark
instead, in which the debt is continuously held domestically.4 This visualizes the trickling up
phenomenon: the share of wealth held by the rich initially rises (the parametric restriction for
a hump shape is satisfied), and the super-rich keep accumulating assets until they hold all of the
excess savings. The bottom left panel shows what happens under a tight monetary policy scenario,
with ϕ = 1.5. The qualitative trickling up patterns are unchanged, but the monetary response does
speed up the adjustment process. The bottom right panel summarizes the effect of excess savings
on aggregate consumption. These effects are long-lasting and significant. In addition to speeding
up the adjustment, the monetary response brings down the level (not shown).

Table 1 summarizes our results by displaying the duration of output and excess savings for the
middle class and the rich under each of our scenarios. The partial equilibrium scenario summa-
rizes the conventional wisdom according to which the effect of excess savings will dissipate in a
few quarters. By contrast, our benchmark scenario suggests that these effects will stick around for
roughly 5 years. These numbers are larger if MPCs are lower, and are robust to plausible alterna-
tive calibrations. Rational expectations about the future boom make the response much larger on
impact due to current spending out of anticipated income, which turns out to speed up the trick-
ling up process. Tight monetary policy, on the other hand, also speeds up trickling up, but it does
so by mitigating the effects of excess savings on demand. In either case, however, the duration of
excess savings and output remains more than twice as long as the conventional wisdom suggests.
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Online Appendix

A Deriving the main model and its extensions

A.1 Characterizing household with bonds-in-utility preferences.

The objective of each household i is to choose consumption to maximize discounted flow utility∫ ∞

0
e−ρt (u(cit) + vi(ait)) dt (3)

where u is flow utility from consumption and vi is type-specific utility from assets, subject to the
flow budget constraint

ȧit = rtait + θiYt − cit (4)

where θi is the type’s share of aggregate income.
This problem delivers the standard intertemporal Euler equation

ċit

cit
= − u′(cit)

u′′(cit)cit

(
v′i(ait)

u′(cit)
+ rt − ρ

)
(5)

Now, multiplying both sides by cit and taking a first-order approximation of (5) around the steady
state, we have

dċit = σ−1
i ci

(
v′′i (ai)

u′(ci)
dait + σi(ρ − r)

dcit

ci
+ drt

)
(6)

where we define σi ≡ − u′′(ci)ci
u′(ci)

. Linearizing (4) gives

dȧit = rdait + aidrt − dcit + θidYt (7)

Characterizing policy function around the steady state: relating to flow MPCs. First, we want
to characterize the consumption policy function for this agent around the steady state in the ab-
sence of shocks to future rt or Yt. Suppose that it is given locally by dcit = midait. Plugging this
into (6) gives

midȧit = σ−1
i ci

(
v′′i (ai)

u′(ci)
dait + σi(ρ − r)

midait

ci

)
and then plugging in dȧit = (r − mi)dait from (7) and dividing the above by dait gives the relation

mi(r − mi) = σ−1
i ci

v′′i (ai)

u′(ci)
+ (ρ − r)mi (8)
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Under the assumption of r = 0 in the steady state, simplifies to just

m2
i + ρmi + σ−1

i ci
v′′i (ai)

u′(ci)
= 0 (9)

(9) gives a quadratic equation that we can solve for the flow MPC mi in terms of primitives around
the steady state.5 Additionally, if we plug (8) into (5), and again enforce r = 0 in steady state, we
obtain a linearized Euler equation where the curvature of the bond-in-utility function shows up
entirely through mi:

dċit = −(m2
i + ρmi)dait + ρdcit + σ−1

i cidrt (10)

In general, we will consider the ρ → 0 limit, as well as a case where u is CRRA, at which point (10)
simplifies further to just

dċit = −m2
i dait + σ−1cidrt (11)

Similarly, with the assumption of r = 0, (7) simplifies to

dȧit = aidrt − dcit + θidYt (12)

Characterizing household policy functions. Define dcP
it ≡ dcit − midait to be the first-order

change in a household’s consumption policy function, which equals the first-order change in con-
sumption relative to steady state, minus the effect of assets. Note that then plugging into (7) and
assuming r = 0 gives

dċP
it = dċit − midȧit

= dċit − miaidrt + midcit − miθidYt

= dċit − miaidrt + midcP
it + m2

i dait − miθidYt (13)

Now, substituting (10) for dċit into this, and writing dcit = dcP
it + midait, we get

dċP
it = −(m2

i + ρmi)dait + ρdcP
it + ρmidait + σ−1

i cidrt − miaidrt + midcP
it + m2

i dait − miθidYt

= (ρ + mi)dcP
it + σ−1

i cidrt − miaidrt − miθidYt (14)

where we see that the (m2
i + ρmi)dait cancel. (14) implies that

dcP
it =

∫ ∞

0
e−(ρ+mi)s(−σ−1

i cidrt+s + miaidrt+s + miθidYt+s)ds (15)

i.e. that the change in consumption policy is the discounted forward-looking average of substitu-
tion effects of interest rates −σ−1

i cidrt+s, income effects of interest rates miaidrt+s, and changes in
aggregate income miθidYt+s. The discount factor is ρ + mi.

5See Auclert, Rognlie and Straub (2018) for the equivalent quadratic equation in discrete time.
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A.2 Description of benchmark general equilibrium environment

We suppose that each type i = 1, . . . , N supplies nit hours of effective labor to the market in steady
state, leading to aggregate labor supply of Nt = ∑i nit. Each unit of labor produces one unit of
goods, Yt = Nt, and the goods market is competitive, so that the real wage is always 1. We assume
that nominal wages are sticky, and that for any level of aggregate labor demand Nt that deviates
from the steady state, the rationing rule increases the effective labor of each type proportionately:
nit =

Nt
N ni. We define θi = ni/N to be the share of effective labor supplied by type i; differences

in θi across groups can reflect differences in population or differences in productivity. Then labor
income of each group is nit = θiYt.

Since nominal wage inflation will not matter for real outcomes under our assumptions, we
leave the Phillips curve for wages (and the underlying disutility function from labor) unspecified.
See Auclert, Rognlie and Straub (2018) for more details.

We assume that we are in the neighborhood of the steady state, that rt is held constant by mon-
etary policy, and that agents assume future aggregate income will be at its steady state level. Then
because all forward-looking inputs to their problems are fixed, agents follow the their steady-state
consumption policy function dcit = midait, and the budget constraint will be given by (12) with
drt = 0, i.e. dȧit = −dcit + θidYt. Further, goods market clearing implies that dYt = ∑i dcit.

These three equations describe our benchmark model; for economy of notation, in the paper,
we replace dcit with cit, dait with ait, and dYt with Yt, with all variables implicitly denoting first-
order deviations from steady state.

Note that, in the absence of a reaction of monetary policy (rt = 0 for all t), we have that the
cumulative output response is∫ ∞

0 Ytdt
B

=
(

1 − aN0

B

) 1
θN

=
Share of initial transfer not given to super-rich

Income share of super-rich
(16)

This follows from the fact that ȧNt = θNYt, so applying Proposition 1, θN
∫ ∞

0 Ytdt =
∫ ∞

0 ȧNtdt =

B − aN0. Equation (16) expresses the cumulative multiplier from the deficit-financed transfer as a
simple ratio of two sufficient statistics, the share of the transfer not initially given to the super-rich
to their income share.

A.3 Extensions

With rational expectations. When agents have rational expectations and do perceive future dYt,
in the limit ρ → 0, then their consumption is simply characterized by (11). We further assume that
monetary policy keeps the real interest rate constant, drt = 0, so this gives

dċit = −m2
i dai

11



Finally, we assume no steady state assets ai = 0, so that equation (12) is

dȧit = θidYt − dcit

Redefining cit ≡ dcit, ait ≡ dait , Yt ≡ dYt for simplicity, the model is now:

ċit = −m2
i ait; ȧit = θiYt − cit; Yt =

N

∑
i=1

cit (17)

With monetary response. Now suppose that rt does vary over time according to some monetary
rule drt = ϕdYt that increases the real interest rate to offset a boom in demand. Assume that this
path of real interest rates is perfectly anticipated by households, but that households still do not
anticipate changes in aggregate income. (For instance, households might see the term structure
of borrowing rates directly from financial markets, but not have similar exposure to their own
incomes; these are level-1 households in Farhi and Werning 2019)

To avoid large instantaneous income effects (since in reality assets will have longer duration
and their returns will be insulated from interest rate changes), and to avoid needing to specify
a taxation rule for the government, we assume here that steady-state assets of all types are zero.
Also, changes in future incomes do not appear in (14), since the household does not perceive
them when choosing policy. Hence, together with our other simplifications, (14) becomes simply
dċP

it = midcP
it + σ−1cidrt, and dcit = midait + dcP

it. This modification to consumption is the only
first-order departure from the benchmark framework.

Note that since the effects of monetary policy are discounted by mi, high i types with lower
mi will have a larger consumption response to interest rates. Therefore, a rise in real interest rates
in response to excess savings will cause high i to spend relatively less, leaving them with more
wealth and speeding the process of trickling up.

To summarize, the equations are:

dċP
it = midcP

it + σ−1cidrt

dcit = midait + dcP
it

dȧit = −dcit + θidYt

dYt =
N

∑
i=1

dcit

Plugging in the monetary response drt = ϕdYt, assuming further that steady state ci = θi, and

12



switching notation back to levels, we obtain:

ċP
it = micP

it + σ−1ϕθiYt

cit = miait + cP
it

ȧit = −cit + θiYt

Yt =
N

∑
i=1

cit

Note that in particular type N agent is Ricardian, with Euler equation dcNt = σ−1cNdrt. In con-
densed form, these equations read:

ċP
it = micP

it + σ−1θiϕYt; ȧit = θiYt − miait − cP
it; Yt =

N

∑
i=1

(
miait + cP

it

)
(18)

B Proofs of propositions 2 and 3

B.1 Proof of proposition 2

We prove the following claim:
Claim (N): Let {θj} be positive and sum to 1, let m1 > . . . > mN = 0, let aj0 ≥ 0, and let ajt

solve the system of differential equations

ȧjt = −mjajt + θj

(
N

∑
i=1

miait + xt

)

where xt ≥ 0 is an exogenous inflow. Assume mjaj0/θj strictly falls in j. Then: For any J ≥ 1 and t

N

∑
j=J

ȧjt ≥
(

N

∑
j=J

θj

)
xt (19)

and for any t

N

∑
j=1

mj ȧjt ≤ xt

N

∑
j=1

mjθj (20)

Claim (N) is strictly more general than proposition 2. Indeed, setting xt = 0, the claim implies

∑N
j=J ȧjt ≥ 0 for any J ≥ 1, from which it follows that

N

∑
j=J

ajt′ ≥
N

∑
j=J

ajt

for any dates t′ > t. The flip-side is ∑J−1
j=1 ajt′ ≤ ∑J−1

j=1 ajt.
We proceed to prove claim (N) by induction over N. The induction start with N = 1 is trivial.
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Next, suppose claim (N) holds. We intend to prove claim (N + 1). For that, take {θj}N
j=0 with

∑N
j=0 θj = 1, m0 > . . . > mN = 0, aj0 ≥ 0 and ajt described by

ȧjt = −mjajt + θj

(
N

∑
i=0

miait + xt

)

Assume mjaj0/θj decreases monotonically in j.

Lemma 1. There is always a positive net flow from type 0 to everyone else. In math,

m0a0t > θ0

N

∑
i=0

miait

which we can rewrite as

m0a0t >
θ0

1 − θ0

N

∑
i=1

miait

Proof. We show this by contradiction. Let τ be the first time at which the are equal,

m0a0τ =
θ0

1 − θ0

N

∑
i=1

miaiτ (21)

This means, up until date t = τ, we can write the evolution of wealth of the types j > 0 as

ȧjt = −mjajt + θj

(
1

1 − θ0

N

∑
i=1

miait + xt + m0a0t −
θ0

1 − θ0

N

∑
i=1

miait

)

where before date τ, m0a0t ≥ θ0
1−θ0

∑N
i=1 miait.

Define θ̃j ≡
θj

1−θ0
for j = 1, . . . , N and

x̃t ≡ (1 − θ0)

(
xt + m0a0t −

θ0

1 − θ0

N

∑
i=1

miait

)

Observe that, at date t = τ, x̃τ = (1 − θ0) xτ. Then, we can apply the induction hypothesis on
types j = 1, . . . , N. This establishes that, at date t = τ,

N

∑
j=1

mj ȧjτ ≤
(

N

∑
j=1

θ̃jmj

)
x̃τ =

(
N

∑
j=1

θjmj

)
xτ
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and so

m0 ȧ0τ = −m2
0a0τ + m0θ0

(
N

∑
i=0

miaiτ + xτ

)
= m0θ0xτ

≥ m0θ0

∑N
j=1 θjmj

N

∑
j=1

mj ȧjτ ≥ θ0

1 − θ0

N

∑
j=1

mj ȧjτ

where we used the fact that mj falls monotonically in j. This is a contradiction to τ being the first
time for which (21) holds with equality, given that at date 0,

m0a00

θ0
>

N

∑
i=0

θi
miai0

θi

which falls from mjaj0/θj strictly falling in j.

Lemma 2. The equations (19) and (20) hold for the economy with N + 1 types.

Proof. Now that we established the positive flow from type 0 to the other types, it follows directly
that

N

∑
j=J

ȧjt ≥
(

N

∑
j=J

θ̃j

)
x̃t =

(
N

∑
j=J

θj

)
xt

for any J ≥ 1. Moreover, total wealth grows at rate xt, so

N

∑
j=0

ȧjt = xt

Hence (19) holds. (20) follows from (19), because

N

∑
j=1

mj ȧjt = m1

N

∑
j=1

ȧjt −
N

∑
k=2

(mk−1 − mk)
N

∑
j=k

ȧjt

≤ m1xt

N

∑
j=1

θj −
N

∑
k=2

(mk−1 − mk)

(
N

∑
j=k

θj

)
xt

≤ xt

N

∑
j=1

mjθj

Lemma 2 establishes claim (N + 1) and thus concludes our proof by induction.
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B.2 Proof of proposition 3

We can write the law of motion for assets (dropping t subscripts) as

ȧi = −miai + θi ∑
j

mjaj (22)

or, in stacked form,
ȧ = (−M + θm′)a

where M = diag(m). Define A ≡ −M + θm′. Note that M−1/2AM1/2 = −I + (M−1/2θ)(M1/2m)′

should have the same eigenvalues as A. Perron-Frobenius implies that (M−1/2θ)(M1/2m)′ has
a unique largest (real) eigenvalue with corresponding positive eigenvector, and then the largest
eigenvalue of A is this minus 1.

Since we have already shown in proposition 1 that this system is globally stable, the largest
eigenvalue of A must be negative. Call this −λ. We see that

−λvi = −mivi + θi ∑
j

mjvj

vi =
θi

mi − λ ∑
j

mjvj

Note that the eigenvector v would not be everywhere positive if λ was greater than or equal to
any mi. We conclude that λ < mi.
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